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Reflection of plane micropolar viscoelastic waves at a
loosely bonded solid–solid interface
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Abstract. A solution of the field equations governing small motions of a
micropolar viscoelastic solid half-space is employed to study the reflection and
transmission of plane waves at a loosely bonded interface between two dissimilar
micropolar viscoelastic solid half-spaces. The amplitude ratios for various reflected
and refracted waves are computed for a particular model for different values of
bonding parameter. The variations of these amplitude ratios with the angle of inci-
dence are shown graphically. Effects of bonding parameter and viscosity on the
amplitude ratios are shown.
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1. Introduction

The theory of micropolar elasticity introduced and developed by Eringen (1968) has aroused
much interest in recent years due to its possible utility in investigating deformation properties
of solids, for which the purely elastic theory is inadequate. This theory is believed to be
particularly useful for investigating materials consisting of bar-like molecules which exhibit
microrotational effects, and which can also support body and surface couples. Examples of
such materials are wood, fibres and corpuscles. Furthermore, the micropolar elastic model
is more realistic than the purely elastic theory for studying geophysical problems and also
nondestructive testing of solids. Various problems of waves and vibrations of micropolar
elastic solids are discussed by several researchers. Notable among them are Smith (1967),
Parfitt & Eringen (1969), Ariman (1972), Tomar & Gogna (1992, 1995), Tomar & Kumar
(1995) etc.

The linear theory of micropolar viscoelasticity was developed by Eringen (1967). McCarthy
& Eringen (1969) discussed the propagation conditions and growth equations, that govern the
propagation of waves in micropolar viscoelasticity. They also studied the couplings between
the discontinuities in the macroscopic and microscopic fields. Recently, Singh (2000) studied
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a problem on reflection and transmission of plane harmonic waves at an interface between
liquid and micropolar viscoelastic solid with stretch.

In the problems of reflection and refraction of seismic waves at the interface between two
elastic half-spaces, it is usually assumed that the half-spaces are in welded contact. However,
the presence of liquid in the porous skeleton may weaken the welded contact at the interface.
Hence it is reasonable to assume that a very thin layer of viscous liquid may be present at
the interface and cause the two media to be loosely bonded. Murty (1976) discussed the
reflection, refraction and attenuation of elastic waves at a loosely bonded interface between
two elastic soild half-spaces by assuming that the interface behaves like a dislocation which
preserves the continuity of traction allowing a finite amount of slip and derived the cases
of welded contact and ideally smooth interfaces as particular cases. Kumar & Singh (1997)
discussed a problem on reflection and transmission of elastic waves at the loosely bonded
interface between an elastic solid half-space and a micropolar elastic solid half-space.

A more realistic model of the earth’s crust is considered to study the reflection and transmis-
sion of plane elastic waves at a loosely bonded interface between two dissimilar micropolar
viscoelastic solid half-spaces. This problem is of geophysical interest, particularly in inves-
tigations concerned with earthquakes and other phenomenon in seismology. The results of
some earlier works (Murty 1976; Kumar & Singh 1997) follow as particular cases of the more
general results presented in this paper.

2. Field equations and their solutions

Following Eringen (1967), the constitutive equations and field equations of a micropolar
viscoelastic solid in the absence of body forces and body couples, can be written as

tkl = λur,rδkl + µ(uk,l + ul,k)+ κ(ul,k − εklrφr), (1)

mkl = αφr,rδkl + βφk,l + γφl,k, (2)

and

(c2
1 + c2

3)∇(∇ · u)− (c2
2 + c2

3)∇ × (∇ × u)+ c2
3∇ × φ = ü, (3)

(c2
4 + c2

5)∇(∇ · φ)− c2
4∇ × (∇ × φ)+ ω2

o∇ × u − 2ω2
oφ = φ̈, (4)

where

c2
1 = (λ+ 2µ)/ρ, c2

2 = µ/ρ, c2
3 = κ/ρ,

c2
4 = γ /ρj, c2

5 = (α + β)/ρj, ω2
o = c2

3/j = κ/ρj,

λ = λ∗ + λ∗
v(∂/∂t), µ = µ∗ + µ∗

v(∂/∂t), κ = κ∗ + κ∗
v (∂/∂t),

α = α∗ + α∗
v (∂/∂t), β = β∗ + β∗

v (∂/∂t), γ = γ ∗ + γ ∗
v (∂/∂t),

∇ = î(∂/∂x)+ k̂(∂/∂z), (5)

λ∗, µ∗, κ∗, α∗, β∗, γ ∗, λ∗
v, µ

∗
v, κ

∗
v , α

∗
v , β

∗
v andγ ∗

v are material constants,ρ is the density and
j the rotational inertia.u andφ are displacement and microrotation vectors respectively.
Superposed dots on the right hand side of (3) and (4) denote the second partial derivative with
respect to time.

Taking u = (u1, 0, u3) and φ = (0,φ2, 0) and introducing potentialsφ(x, z, t) and
ψ(x, z, t) which are related to displacement components as

u1 = (∂φ/∂x)+ (∂ψ/∂z), u3 = (∂φ/∂z)− (∂ψ/∂x), (6)
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Substituting the displacement components given by (6) in the (3) and (4), we obtain(
∇2 − 1

(c2
1 + c2

3)

∂2

∂t2

)
φ = 0, (7)

(
∇2 − 1

(c2
2 + c2

3)

∂2

∂t2

)
ψ − pφ2 = 0, (8)

(
∇2 − 2q − 1

c2
4

∂2

∂t2

)
φ2 + q∇2ψ = 0, (9)

where

p = µ/(µ+ κ), q = κ/γ. (10)

We assume time variation as

φ(x, z, t) = φ(x, z)exp(iωt),

ψ(x, z, t) = ψ(x, z)exp(iωt),

φ2(x, z, t) = φ2(x, z)exp(iωt). (11)

Substituting (11) in (7) to (9), we get

(∇2 + (ω2/V 2
1 )φ = 0 (12)

(∇4 + ω2B∇2 + ω4C)(ψ, φ2) = 0, (13)

where

B = q(p − 2)

ω2
+ 1

(c2
2 + c2

3)
+ 1

c2
4

,

C = 1

(c2
2 + c2

3)

(
1

c2
4

− 2q

ω2

)
(14)

and

V 2
1 = c2

1 + c2
3. (15)

In an unbounded medium, the solution of (12) corresponds to modified longitudinal displace-
ment wave (LD wave) propagating with velocityV1.

The solution of (13) can be written as

ψ = ψ1 + ψ2 (16)

whereψ1 andψ2 satisfy

(∇2 + δ2
1)ψ1 = 0, (17)

(∇2 + δ2
2)ψ2 = 0. (18)

and

δ2
1 = λ2

1ω
2, δ2

2 = λ2
2ω

2, (19)

λ2
1,2 = [B ± (B2 − 4C)1/2]/2. (20)
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From (8) we obtain

φ2 = Eψ1 + Fψ2,

where

E =
(

ω2

c2
2 + c2

3

− δ2
1

)
/p, F =

(
ω2

c2
2 + c2

3

− δ2
2

)
/p.

Thus there are two waves propagating with velocitiesλ−1
1 andλ−1

2 each consisting of transverse
displacementψ and transverse microrotationφ2. Following Parfitt & Eringen (1969), we call
these waves modified coupled transverse displacement wave and transverse microrotational
waves (i .e. CD I and CD II waves) respectively.

3. Formulation of the problem

We consider a model consisting two dissimilar isotropic homogeneous micropolar viscoelastic
solid half-spaces separating at a loosely bonded plane interface. A Cartesian coordinate system
(x, y, z) is chosen with the interface atz = 0 and thez-axis pointing into lower half-space.
We consider plane waves inx–z plane with the wave front parallel to they-axis. The complete
geometry for incident, reflected and refracted waves is given in figure 1.

4. Boundary conditions

Following Murty (1976), the boundary conditions appropriate at the loosely bonded interface
z = 0 are as follows.

(i) Continuity of the normal force stress across the interfacez = 0.
(ii) Continuity of the shear force stress across the interfacez = 0.

B2
 ′

B1
 ′

B3
 ′ Figure 1. Geometry of the prob-

lem
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(iii) Continuity of the normal displacements across the interfacez = 0.
(iv) Continuity of the shear couple stress across the interfacez = 0.
(v) Continuity of the microrotational component across the interfacez = 0.

(vi) Shearing stress is proportional to the slip at the interface.

For the purpose of numerical computation, we write these boundary conditions as

tzz = t ′zz, tzx = t ′zx, u3 = u′
3, mzy = m′

zy, φ2 = φ′
2,

tzx = ikµτ(u1 − u′
1), at z = 0, (21)

where

τ = ξ/(1 − ξ) sinI , (22)

andξ = 0 corresponds to a smooth interface andξ = 1 corresponds to a welded interface
between half-spaces.ξ may be referred to as the bonding constant andI the angle of incidence.
Symbols with primes correspond to the lower half-space(z > 0).

5. Reflection and transmission

We shall consider here the case when the incident wave propagates through the upper half-
space(z < 0). An incident LD- or CD I-wave in the upper medium(z < 0) gives a
reflected LD-wave and two reflected sets of two coupled waves (CD I and CD II), and also
transmitted waves LD-, CD I- and CD II-waves in the lower medium (z > 0) as shown in
figure 1.

The potential functions for incident, reflected and refracted waves{after leaving out the
term, expi(ωt − kx)} are as follows

φ = Bo exp(idβz)+ B1 exp(−idβz), (23)

ψ = Bo exp(idα1z)+ B2 exp(−idα1z)+ B3 exp(−idα2z), (24)

φ2 = EBo exp(idα1z)+ EB2 exp(−idα1z)+ FB3 exp(−idα2z), (25)

φ′ = B ′
1 exp(idβ ′z), (26)

ψ ′ = B ′
2 exp(idα′

1z)+ B ′
3 exp(idα′

2z), (27)

φ′
2 = E′B ′

2 exp(idα′
1z)+ F ′B ′

3exp(idα
′
2z), (28)

where

dβ = k{(c/V1)
2 − 1}1/2, dα1 = k{(cλ1)

2 − 1}1/2, dα2 = k{(cλ2)2 − 1}1/2,

dβ ′ = k{(c/V ′
1)

2 − 1}1/2, dα′
1 = k{(cλ′

1)
2 − 1}1/2, dα′

2 = k{(cλ′
2)2 − 1}1/2,

andc is the apparent phase velocity.
For incident LD wave,Bo = 0 in (24) and (25) whereas for incident CD I wave,Bo = 0 in

(23).
Making use of the potentials given by (23) to (28) in the boundary conditions given by

(21), we obtain the following system of non-homogeneous equations

6∑
i=1

aijZj = bi, (29)
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where

a11 = −λ(dβ2 + k2)− (2µ+ κ)dβ2, a12 = (2µ+ κ) k dα1,

a13 = (2µ+ κ) k dα2, a14 = λ′(dβ ′2 + k2)+ (2µ′ + κ ′)dβ ′2,
a15 = (2µ′ + κ ′)kdα′

1, a16 = (2µ′ + κ ′)kdα′
2,

a21 = −(2µ+ κ)kdβ, a22 = {µ(k2 − dα2
1)− κ(dα2

1 + E)},
a23 = {µ(k2 − dα2

2)− κ(dα2
2 + F)}, a24 = −(2µ′ + κ ′)kdβ ′,

a25 = −{µ′(k2 − dα1
′2)− κ ′(dα1

′2 + E′)},
a26 = −{µ′(k2 − dα2

′2)− κ ′(dα2′2 + F ′)},
a31 = −dβ, a32 = a33 = k = −a35 = −a36, a34 = −dβ ′,
a41 = a44 = 0, a42 = −dα1γE, a43 = −dα2γF,

a45 = −dα′
1γ

′E′, a46 = −dα′
2γ

′F ′, a51 = a54 = 0, a52 = E,

a53 = F, a55 = −E′, a56 = −F ′, a61 = −(2µ+ κ)kdβ − µτk2,

a62 = {µ(k2 − dα2
1)− κ(dα2

1 + E)} − µτkdα1,

a63 = {µ(k2 − dα2
2)− κ(dα2

2 + F)} − µτkdα2,

a64 = µτk2, a65 = −µτkdα′
1, a66 = −µτkdα′

2.

(a) Incident LD wave

b1 = −a11, b2 = a21, b3 = a31, b4 = −a41, b5 = a51,

b6 = −(2µ+ κ)kdβ + µτk2,

(b) Incident CD I wave

b1 = a12, b2 = −a22, b3 = −a32, b4 = a42, b5 = −a52,

b6 = −{µ(k2 − dα2
1)− κ(dα2

1 + E)} − µτkdα1,

andZi(i = 1, 2, . . . ,6) are the amplitude ratios for various reflected and transmitted waves.
If we neglect viscous effects, the system of equations reduce to that for the problem of

reflection and transmission of plane waves at a loosely bonded interface between two dissim-
ilar micropolar elastic solid half-spaces. The problems on loosely bonded interface discussed
by Murty (1976) and Kumar & Singh (1997) may be derived as particular cases of the present
problem.

6. Numerical results and discussion

Theory indicates that the amplitude ratios|Zi |, (1, 2, . . . ,6) depend on the angle of incidence
of the incident wave. To study in greater detail, the dependence of these ratios on properties
of media together with the angle of incidence, we compute the amplitude ratios. Following
Gauthier (1982), the physical constants used for aluminium–epoxy composite (micropolar
elastic solid) are

λ∗′ = 7.59× 1011 dyne/cm2, µ∗′ = 1.89× 1011 dyne/cm2,

κ∗′ = 0.0149× 1011dyne/cm2, ρ ′ = 2.19 gm/cm3,

γ ∗′ = 0.0268× 1011dyne, j ′ = 0.0196 cm2.
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The physical constants for a particular model of micropolar viscoelastic solid are given as

λ′ = λ∗′(1 + iQ1
′−1
), µ′ = µ∗′(1 + iQ2

′−1
),

κ ′ = κ∗′(1 + iQ3
′−1
), γ ′ = γ ∗′(1 + iQ4

′−1
),

where the quality factorsQ′
i (i = 1, 2, . . . ,4) are chosen arbitrarily as

Q′
1 = 5, Q′

2 = 10, Q′
3 = 15, Q′

4 = 13.

This numerical data is used for lower half-space.
The numerical data used for upper half-space is as follows

λ∗ = 6.8 × 1011 dyne/cm2, µ∗ = 1.63× 1011 dyne/cm2,

κ∗ = 0.0134× 1011dyne/cm2, ρ = 2.06 gm/cm3,

γ ∗ = 0.0254× 1011 dyne, j = 0.0187 cm2,

λ = λ∗(1 + iQ−1
1 ), µ = µ∗(1 + iQ−1

2 ),

κ = κ∗(1 + iQ−1
3 ), γ = γ ∗(1 + iQ−1

4 ),

where quality factorsQi(i = 1, 2, . . . ,4) are chosen arbitrarily as

Q1 = 4, Q2 = 9, Q3 = 13,Q4 = 11.

For the above values of relevant physical constants, the system of (29) are solved for amplitude
ratios by the application of the Gauss elimination method for different angles of incidence
varying from 0◦ to 90◦. The variations of the modulus of the amplitude ratios of various
reflected and transmitted waves are shown graphically with the angle of incidence of the
incident LD or CDI wave for the bonding parameterξ = 0.0, 0.25, 0.50, 0.75, 1.0 and for
frequencyω2/ω2

o = 20. The nature of dependence of amplitude ratios of different reflected
and transmitted waves on the angle of incidence is, however, different for the different values
of the bonding parameter.

6.1 Incident LD wave

Figure 2 shows the variations of amplitude ratios for reflected LD wave (without centre
symbols) and transmitted LD wave (with centre symbol) with the angle of incidence for
ξ = 0.0, 0.25, 0.50, 0.75 and 1.0. For each bonding parameter, the amplitude ratios for
reflected LD wave first decrease to their minimum values and then attain their respective
maxima. The amplitude ratios for transmitted wave decrease from their maxima to minima
for each value of bonding parameter. The amplitude ratios for reflected LD and transmitted
LD wave vary with the change in the value of bonding parameter at each angle of incidence.

Figure 3 shows the variations of amplitude ratios for reflected CD I waves (without centre
symbols) and transmitted CD I waves (with centre symbols) with the angle of incidence for
ξ = 0.0, 0.25, 0.50, 0.75, 1.0 and for frequency ratioω2/ω2

o = 20. On comparing the curves
without centre symbols in figure 3, the effect of bonding parameter is observed on reflected
CD I waves. Similarly, the transmitted CD I waves are also affected by change in bonding
parameter.

Figure 4 shows the variations for reflected and transmitted CD II waves. The variations
are found similar to those of reflected and transmitted CD I waves shown in figure 3. The
reflected and transmitted CD II waves are also affected by change in bonding parameter.
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Figure 2. Variations of the amplitude ratios for reflected and refracted LD waves with the angle of
incidence of incident LD wave.
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Figure 3. Variations of the amplitude ratios for reflected and refracted CD I waves with the angle of
incidence of incident LD wave.
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Figure 4. Variations of the amplitude ratios for reflected and refracted CD II waves with the angle of
incidence of incident LD wave.

For bonding parameterξ = 0.5, the amplitude ratios for reflected LD, reflected CD I,
transmitted LD, transmitted CD I waves are shown in figure 5 with and without viscous
effect by curves with and without centre symbols. The comparison between curvesS∗ and
S reveals the effect of viscosity upon amplitude ratios of reflected LD wave. Similarly, the
effect of viscosity is observed on reflected CD I waves, transmitted LD wave and transmitted
CD I waves by comparing the curvesD∗

1,D
∗
2,D

∗
3 with the curvesD1,D2,D3 in figure 5. The

transmitted CD I wave is least affected wave by viscosity.
For bonding parameterξ = 0.5, the amplitude ratios for reflected CD II and transmitted

CD II waves are shown in figure 6 with and without viscous effect by curves with and without
centre symbols. The comparison between curvesL∗ andL reveals the effect of viscosity upon
amplitude ratios of reflected CD II waves. Similarly, the effect of viscosity is observed on
transmitted CD II waves by comparing the curvesL∗

1 with the curvesL1 in figure 6.

6.2 Incident CD I wave

Figures 7 to 9 show the variations of the modulus of the amplitude ratios for various reflected
and transmitted waves with the angle of incidence of the incident CD I wave for the bonding
parameterξ = 0.0, 0.25, 0.50, 0.75, 1.0 and frequency ratioω2/ω2

o = 20. Effect of loose
boundary on amplitude ratios is observed significantly.

For bonding parameterξ = 0.5, the amplitude ratios for various reflected and transmitted
waves are shown in figures 10 and 11 with and without viscous effect by curves with and
without centre symbols. The effect of viscosity on various reflected and transmitted waves is
observed.
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Figure 5. Variations of the amplitude ratios for reflected and refracted LD and CD I waves with the
angle of incidence of incident LD wave.
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Figure 6. Variations of the amplitude ratios for reflected and refracted CD II waves with the angle of
incidence of incident LD wave.
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Figure 7. Variations of the amplitude ratios for reflected and refracted LD waves with the angle of
incidence of incident CD I wave.
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Figure 8. Variations of the amplitude ratios for reflected and refracted CD I waves with the angle of
incidence of incident CD I wave.
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Figure 9. Variations of the amplitude ratios for reflected and refracted CD II waves with the angle of
incidence of incident CD I wave.
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Figure 10. Variations of the amplitude ratios for reflected and refracted LD and CD I waves with the
angle of incidence of incident CD I wave.
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Figure 11. Variations of the amplitude ratios for reflected and refracted CD II waves with the angle
of incidence and incident CD I wave.

7. Conclusions

Numerical calculations in detail are presented for the cases of LD and CD I waves incident
at the loosely bonded interface of the model considered. The present numerical results agree
fairly well with those obtained by Murty (1976). For the both cases of incidence, it is observed
that the amplitude ratios change with the change in bonding parameterξ . However, the rate of
change of the amplitude ratios is not uniform. Therefore, the assumption of loosely bonded
interface instead of welded affects reflection–refraction phenomenon more significantly. The
effect of viscosity is also observed on various reflected and transmitted waves.
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