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Abstract. A solution of the field equations governing small motions of a
micropolar viscoelastic solid half-space with stretch is employed to study the
reflection and transmission at the interface between a liquid and a micropolar
viscoelastic solid with stretch. The amplitude ratios for various reflected and
refracted waves are computed and depicted graphically. Effects of axial stretch
and viscosity on the amplitude ratios are discussed.
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1. Introduction

The theory of micropolar elasticity constructed by Eringen & Suhubi (1964) and Eringen
(1968) is intended to be applied to materials for problems where the ordinary classical
theory of elasticity fails owing to the microstructure of the material. This is the case with
regard to problems of grainy and multimolecular bodies. Most of the natural and man-made
materials, including engineering, geological and biological media, possess a microstruc-
ture. The linear theory of micropolar viscoelasticity was developed by Eringen (1967).
Mc Carthy & Eringen (1969) discussed wave propagation conditions and growth equations.
Kumar et al (1990) discussed a plane problem in a micropolar viscoelastic solid with
stretch. Many problems of waves and vibrations have been discussed in micropolar elastic
solids by several researchers. Notable among them are Parfitt & Eringen (1969), Tomar &
Gogna (1992, 1995), Tomar & Kumar (1995) etc. The present paper is concerned with
plane wave propagation in an infinite micropolar viscoelastic solid with stretch, and
reflection and transmission of plane harmonic waves at the interface between liquid and
micropolar viscoelastic solid with stretch.
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2. Field equations and their solutions

Following Eringen (1967, 1971), the constitutive and field equations of a micropolar
viscoelastic solid with stretch (see figure 1), in the absence of body forces and body
couples, can be written as

tkl ¼ �ur;r�kl þ �ðuk;l þ ul;kÞ þ �ðul;k ÿ �klr�rÞ; ð1Þ
mkl ¼ �0�rkl�;r þ ��r;r�kl þ ��k;l þ �l;k; ð2Þ
�k ¼ �o�;k þ ð�o=3Þ�rkl�r;l; ð3Þ

and

ðc2
1 þ c2

3Þrðr � uÞ ÿ ðc2
2 þ c2

3Þr � ðr � uÞ þ c2
3r� / ¼ �u; ð4Þ

ðc2
4 þ c2

5Þrðr � /Þ ÿ c2
4r� ðr� /Þ þ !2

or� uÿ 2!2
o/ ¼ �/; ð5Þ

�r2�ÿ �o� ¼ ð�j=2Þ��; ð6Þ

where

c2
1 ¼ ð�þ 2�Þ=�; c2

2 ¼ �=�; c2
3 ¼ �=�;

c2
4 ¼ =�j; c2

5 ¼ ð�þ �Þ=�j; !2
o ¼ c2

3=j ¼ �=�j;

� ¼ �� þ ð@=@tÞ��v; � ¼ �� þ ð@=@tÞ��v; � ¼ �� þ ð@=@tÞ��v;
� ¼ �� þ ð@=@tÞ��v; � ¼ �� þ ð@=@tÞ��v ;  ¼ � þ ð@=@tÞ�v ;
r ¼ î @@x

þ k̂ @
@z
;

ð7Þ

��; ��; ��; ��; ��; �; ��v; �
�
v; �

�
v; �

�
v; �

�
v ; 

�
v ; �

�
v; �

�
v ; �0 are material constants, � is density, j is

rotational inertia and � is scalar microstretch. u and / are displacement and microrotation
vectors respectively. Superposed dots on the right hand side of (4) and (5) stand for second
partial derivative with respect to time.

Figure 1. Geometry of the problem.
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Taking u ¼ ðu1; 0; u3Þ and / ¼ ð0; �2; 0Þ and introducing potentials �ðx; z; tÞ and
 ðx; z; tÞ which are related to displacement components, we get

u1 ¼
@�

@z
þ @ 
@x
; u3 ¼

@�

@x
ÿ @ 
@z
: ð8Þ

Substituting the displacement components given by (8) in (4) to (6), we obtain

r2 ÿ 1

ðc2
1 þ c2

3Þ
@2

@t2

� �
� ¼ 0; ð9Þ

r2 ÿ 1

ðc2
2 þ c2

3Þ
@2

@t2

� �
 ÿ p�2 ¼ 0; ð10Þ

r2 ÿ 2qÿ 1

c2
4

@2

@t2

� �
�2 þ qr2 ¼ 0; ð11Þ

r2 ÿ r1 ÿ
1

c2
6

@2

@t2

� �
� ¼ 0; ð12Þ

where

p ¼ �=ð�þ �Þ; q ¼ �=; c2
6 ¼ 2�o=�j; r1 ¼ �0=�0: ð13Þ

Assuming harmonic time variation as

�ðx; z; tÞ ¼ ��ðx; zÞ expði!tÞ;
 ðx; z; tÞ ¼ � ðx; zÞ expði!tÞ;
�2ðx; z; tÞ ¼ ��2ðx; zÞ expði!tÞ;
�ðx; z; tÞ ¼ ��ðx; zÞ expði!tÞ: ð14Þ

Substituting (14) in (9) to (12), we get

r2 þ !
2

V2
1

� �
�� ¼ 0; ð15Þ

ðr4 þ !2Br2 þ !4CÞð � ; ��2Þ ¼ 0; ð16Þ

r2 þ !
2

V2

� �
�� ¼ 0; ð17Þ

where

B ¼ qðpÿ 2Þ
!2

þ 1

ðc2
2 þ c2

3Þ
þ 1

c2
4

;

C ¼ 1

ðc2
2 þ c2

3Þ
1

c2
4

ÿ 2q

!2

� �
; ð18Þ

and

V2 ¼ c2
6= 1ÿ r1c2

6

!2

� �
; V2

1 ¼ c2
1 þ c2

3: ð19Þ
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In an unbounded medium, the solution of (15) corresponds to a modified longitudinal
displacement wave propagating with velocity V1. The solution of (16) can be written as

� ¼ � 1 þ � 2; ð20Þ

where  1 and  2 satisfy

ðr2 þ �2
1Þ � 1 ¼ 0; ð21Þ

ðr2 þ �2
2Þ � 2 ¼ 0; ð22Þ

and where

�2
1 ¼ �2

1!
2; �2

2 ¼ �2
2!

2;

�2
1;2 ¼ ½B� ðB2 ÿ 4CÞ1=2�=2: ð23Þ

From (10) we obtain

��2 ¼ E � 1 þ F � 2;

where

E ¼ !2

c2
2 þ c2

3

ÿ �2
1

� �
=p; F ¼ !2

c2
2 þ c2

3

ÿ �2
2

� �
=p: ð24Þ

Thus there are two waves propagating with velocities �ÿ1
1 and �ÿ1

2 each consisting of
transverse displacement  and transverse microrotation �2. Following Parfitt & Eringen
(1969), we call these waves the modified coupled transverse displacement wave and the
transverse microrotational wave, respectively.

Equation (17) shows that there exists a wave propagating with velocity V, which we call
a longitudinal microstretch wave in a micropolar viscoelastic medium with stretch.

This velocity V is real and finite if

1ÿ ðr1c2
6=!

2Þ > 0: ð25Þ

The inequality (26) with the help of (13) reduces to

! > !c; ð26Þ

where

!c ¼ 21=2�0=�j:

This is the condition for the existence of a modified longitudinal microstretch wave.
For the liquid half-space, the equation of motion in terms of displacement �0 is given by

r2�0 ¼ 1

�2
��0; ð27Þ

where �02ð¼ �0=�0Þ is the square of the velocity of sound in liquid.
The displacement components u01; u

0
3 and pressure p0 are given by

u01 ¼
@�0

@x
; u03 ¼

@�0

@z
and p0 ¼ ÿ�0 ��0: ð28Þ
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3. Boundary conditions

For two-dimensional motion, the boundary conditions appropriate at the interface z ¼ 0,
are the continuity of normal force stress and normal displacement and the vanishing of the
tangential force stress, tangential couple stress and vector first moment across the interface
z ¼ 0; that is

tzz ¼ ÿp0; tzx ¼ 0; mzy ¼ 0; u3 ¼ u03; �z ¼ 0; at z ¼ 0: ð29Þ

4. Reflection and refraction

We consider the propagation of plane waves in the xz-plane, incident at an angle I with the
normal to the boundary. For an incident longitudinal wave, c ¼ �0 cosec I; for an incident
modified longitudinal displacement wave, c ¼ V1 cosec I; for an incident set of modified
coupled transverse displacement and microrotational waves, c ¼ �ÿ1

1 cosec I and for an
incident longitudinal microstretch wave, c ¼ V cosec I; where c is the apparent phase
velocity on the surface.

When a micropolar wave modified due to viscous and stretch effects (i.e. a modified
longitudinal displacement wave or one of the sets of modified coupled transverse
displacement and microrotational waves or a longitudinal microstretch wave) is incident at
the interface z ¼ 0, we get four reflected waves. A modified longitudinal displacement
wave, two sets of two modified coupled waves and a longitudinal microstretch wave in
micropolar viscoelastic medium with stretch ðz > 0Þ and a refracted longitudinal wave in
the liquid medium ðz < 0Þ. Corresponding to the incident longitudinal wave propagating
through the liquid half-space, we obtain a reflected longitudinal wave in the liquid half-
space and four waves as refracted waves in micropolar viscoelastic solid half-space with
stretch. The complete geometry showing these reflected and transmitted waves has been
shown in figure 1.

The potential functions f after leaving exp ið!t ÿ kxÞg are as follows:

�0 ¼ B0 expðid01zÞ þ B1 expðÿid01zÞ; ð30Þ

� ¼ B0 expðÿid�zÞ þ B�1 expðid�zÞ; ð31Þ

 ¼ B0 expðÿid�1zÞ þ B�2 expðid�1zÞ þ B�3 expðid�2zÞ; ð32Þ

�2 ¼ EB0 expðÿid�1zÞ þ EB�2 expðid�1zÞ þ FB�3 expðid�2zÞ; ð33Þ

� ¼ B0 expðÿid1zÞ þ B�4 expðid1zÞ; ð34Þ

where

d01 ¼ kfðc=�0Þ2 ÿ 1g1=2; d� ¼ kfðc=V1Þ2 ÿ 1g1=2; d�1 ¼ kfðc�1Þ2 ÿ 1g1=2;

d�2 ¼ kfðc�2Þ2 ÿ 1g1=2; d1 ¼ kfðc=VÞ2 ÿ 1g1=2;

and for an incident longitudinal wave, B0 ¼ 0 in (31) to (34); for an incident modified
longitudinal displacement wave, B0 is zero in (30) and (32) to (34); for an incident set of
modified coupled waves, B0 is zero in (30), (31) and (34) and for incident modified
longitudinal microstretch wave, B0 is zero in (30) to (33).
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Making use of the potentials given by (30) to (34) in boundary conditions (29) after using
(1) to (3), (8) and (29), we obtain the following system of nonhomogeneous equationsX5

i¼1

aijZj ¼ bi; ð35Þ

where aij are

a11 ¼ ÿ�0!2; a12 ¼ �ðd�2 þ k2Þ þ ð2�þ �Þd�2;

a13 ¼ ð2�þ �Þkd�1; a14 ¼ ð2�þ �Þkd�2; a15 ¼ 0;

a21 ¼ 0; a22 ¼ ð2�þ �Þkd�;

a23 ¼ f�ðk2 ÿ d�2
1Þ ÿ �ðd�2

1 þ EÞg;

a24 ¼ f�ðk2 ÿ d�2
2Þ ÿ �ðd�2

2 þ FÞg; a25 ¼ 0;

a31 ¼ 0 ¼ a32; a33 ¼ Ed�1; a34 ¼ Fd�2; a35 ¼ �0k;

a41 ¼ ÿd01; a42 ¼ ÿd�; a43 ¼ a44 ¼ ÿk; a45 ¼ 0;

a51 ¼ 0 ¼ a52; a53 ¼ ÿkE�0=3; a54 ¼ ÿkF�0=3; a55 ¼ �0d1;

and, bij are related to aij as

(a) incident longitudinal wave –

b1 ¼ ÿa11; b2 ¼ a21; b3 ¼ ÿa31; b4 ¼ a41; b5 ¼ a51;

(b) incident modified longitudinal displacement wave –

b1 ¼ ÿa12; b2 ¼ a22; b3 ¼ ÿa32; b4 ¼ a42; b5 ¼ a52;

(c) incident modified coupled wave –

b1 ¼ a13; b2 ¼ ÿa23; b3 ¼ a33; b4 ¼ ÿa43; b5 ¼ a53;

(d) incident longitudinal microstretch wave –

b1 ¼ a15; b2 ¼ a25; b3 ¼ ÿa35; b4 ¼ a45; b5 ¼ a55;

and Ziði ¼ 1; 2; . . . ; 5Þ are the amplitude ratios for various reflected and refracted waves.
If we neglect both viscous and stretch effects, we obtain the system of equations for the

problem of reflection and transmission of plane waves at the interface between liquid and
micropolar elastic solid. Further, if we remove the liquid half-space, we obtain the system
of equations for the problem of reflection of plane waves from the free surface of
micropolar elastic solid which agrees with those obtained by Parfitt & Eringen (1969).

5. Numerical results and discussion

Theory indicates that the amplitude ratios jZij; ð1; 2; . . . ; 5Þ depend on the angle of
incidence of the incident wave. To study these in greater detail, the dependence of these
ratios on properties of media together with the angle of incidence, we compute the
amplitude ratios. We take the case of aluminium–epoxy composite subject to viscous effect
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and stretch effect for our calculations. Following Gauthier (1982), the physical constants
used for micropolar elastic solids are

�� ¼ 7:59� 1010 N=m
2; �� ¼ 1:89� 1010 N=m

2;

k� ¼ 1:49� 108 N=m
2; � ¼ 2:19� 103 kg=m

3;

� ¼ 2:68� 104 N; j ¼ 1:96� 10ÿ6 m2; !2=!2
0 ¼ 200:

For a particular model of micropolar viscoelastic solid with stretch, the physical constants
are given as

� ¼ ��ð1þ iQÿ1
1 Þ; � ¼ ��ð1þ iQÿ1

2 Þ;
� ¼ ��ð1þ iQÿ1

3 Þ;  ¼ �ð1þ iQÿ1
4 Þ;

where Qiði ¼ 1; 2; . . . ; 4Þ are chosen arbitrarily as

Q1 ¼ 5; Q2 ¼ 10; Q3 ¼ 15; Q4 ¼ 13;

and

�0 ¼ 9:15� 105 N; �0 ¼ 7:26� 105 N; �0 ¼ 5:32� 105 N:

Relevant parameters for the liquid half-space are

�0 ¼ 1000 kg=m
3; �0 ¼ 2:21� 1010 N=m

2:

For the above values of relevant physical constants, the system of equations (35) are solved
for amplitude ratios by the application of the Gauss elimination method for different angles
of incidence varying from 0� to 90�. The variation of the amplitude ratios with the angle of
incidence is shown graphically in figure 2–11. Here, we discuss the numerical results in
detail, for the cases of incident longitudinal wave and incident modified longitudinal
displacement wave. The solid lines in the figures represent variations without viscous and
stretch effects whereas dotted lines L1 and L2 represent variations due to the viscous effect
only and due to both viscous and stretch effects respectively.

Figure 2. Variations of the modulus of ampli-
tude ratios with the angle of incidence, for
reflected longitudinal waves.
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Case (1) – Incident longitudinal wave

The variation of amplitude ratios jZij; ð1; 2; . . . ; 5Þ with the angle of incidence I of the
incident longitudinal wave starting from 0� (grazing incidence) to 90� (normal incidence) is
depicted in figures 2 to 6. It is evident that the reflection and refraction coefficients depend
on the angle of incidence, the nature of dependence on the angle of incidence is, however,
different for different reflected and transmitted waves.

The amplitude ratio jZ1j for the reflected longitudinal wave remains almost constant
(figure 2) for the range 0� � I � 33� but increases sharply thereafter. It decreases sharply
again for the range 41� � �o � 63� and attains a minimum near I ¼ 63�. Beyond I ¼ 63�,
it increases sharply again to its maximum near I ¼ 90�. This is shown graphically by the
dotted line L2 in figure 2. If we compare the solid line with the dotted lines (L1 and L2), we
find that the amplitude ratio decreases slightly due to viscous and stretch effects.

Variation of the amplitude ratio jZ2j for refracted modified longitudinal displacement
wave has been depicted by the dotted line L2 in figure 3. It attains its maximum near

Figure 3. Variations of the modulus of ampli-
tude ratios with the angle of incidence, for
refracted modified LD waves.

Figure 4. Variations of the modulus of ampli-
tude ratios with the angle of incidence, for
refracted modified CDI waves.
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I ¼ 41� and sharply decreases to its minimum at I ¼ 90�. If we compare the solid line with
the dotted lines (L1 and L2), we find that the amplitude ratio decreases due to viscous and
stretch effects.

Variation of the amplitude ratios jZ3j and jZ4j for refracted modified coupled waves have
been shown by the dotted lines (L2) in figures 4 and 5. Amplitude ratios jZ3j and jZ4j for
CD I and CD II waves show monotonic variations and attain their respective maxima near
I ¼ 55�. On comparing solid and dotted lines (L1 and L2) , we observe the effect of viscous
and stretch effects on these coupled waves.

Variation of the amplitude ratio jZ5j for refracted longitudinal microstretch (LMS) wave
is shown by the dotted line L2 in figure 6. The variation of the amplitude ratio jZ5j is
monotonic and attains its maximum near I ¼ 55�. If we neglect stretch effect, this wave
will not appear.

Figure 5. Variations of the modulus of
amplitude ratios with the angle of incidence,
for refracted modified CDII waves.

Figure 6. Variations of the modulus of
amplitude ratios with the angle of incidence,
for refracted LMS waves.
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Case (2) – Incident modified longitudinal displacement wave

Variation of amplitude ratios jZij; ð1; 2; . . . ; 5Þ with the angle of incidence I of the incident
modified longitudinal displacement wave starting from I ¼ 0� (grazing incidence) to 90�

(normal incidence) are depicted in figures 7 to 11.
The amplitude ratio jZ1j for refracted longitudinal wave decreases slowly to its minimum

near I ¼ 55� but it increases sharply to its maximum at I ¼ 90�. The variation of this
amplitude ratio is shown by the dotted line L2 in figure 7. If we compare the solid line with
the dotted lines (L1 and L2), we find that the amplitude ratio changes slightly due to the
viscous and stretch effects.

The variation of the amplitude ratio jZ 2j for reflected modified longitudinal displacement
wave has been depicted by the dotted line L2 in figure 8. It decreases from its maximum at
I ¼ 0� to its minimum at I ¼ 90�. If we compare the solid line with the dotted lines (L1 and
L2), we find that the viscous and stretch effects are not significant.

Figure 7. Variations of the modulus of
amplitude ratios with the angle of incidence,
for refracted longitudinal waves.

Figure 8. Variations of the modulus of
amplitude ratios with the angle of incidence,
for reflected LD waves.
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Variation of the amplitude ratios jZ3j and jZ4j for reflected modified coupled waves is
shown by dotted lines (L2) in figures 9 and 10 respectively. The amplitude ratios jZ3j and
jZ4j for CD I and CD II waves first increase to their respective maxima near I ¼ 49� and
then decrease to zero at I ¼ 90�. On comparing the solid and the dotted lines (L1 and L2) ,
we observe the effect of viscous and stretch effects on these coupled waves.

Variation of the amplitude ratio jZ5j for reflected longitudinal microstretch (LMS) waves
is shown by the dotted line L2 in figure 11. The amplitude ratio jZ5j increases sharply to its
maximum near I ¼ 15�. Beyond this, it shows a monotonic fall. This wave will not exist in
the absence of axial stretch effect.

5. Conclusions

The equations of motion for micropolar viscoelastic solid with stretch in the absence of
body forces and couples have been analysed. The solutions lead to the existence of a new
wave which we call as longitudinal microstretch wave. The existence of this stretch wave

Figure 9. Variations of the modulus of
amplitude ratios with the angle of inci-
dence, for reflected modified CDI waves.

Figure 10. Variations of the modulus of
amplitude ratios with the angle of incidence,
for reflected modified CDII waves.
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implies the importance of axial stretch phenomenon. Also, the micropolar elastic waves are
modified due to viscous and stretch effects.

Numerical calculations in detail have been presented for the cases of longitudinal wave
and modified longitudinal displacement wave incident at the interface of the model
considered. From the numerical discussion, it may be concluded that stretch effect plays an
important role in reflection and transmission phenomenon. Also, if we neglect the viscous
effect, we find that the variations in reflected and refracted waves have also been affected
but not as significantly as those due to the stretch effect. The model considered in the
problem becomes more interesting due to inclusion of axial stretch and viscosity as
additional parameters.
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