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The governing equations for generalized thermodiffusion in an elastic solid are solved. There exists
three kinds of dilatational waves and a Shear Vertical (SV) wave in a two-dimensional model of
the solid. The reflection phenomena of P and SV wave from free surface of an elastic solid with
thermodiffusion is considered. The boundary conditions are solved to obtain a system of four non-
homogeneous equations for reflection coefficients. These reflection coefficients are found to depend
upon the angle of incidence of P and SV waves, thermodiffusion parameters and other material
constants. The numerical values of modulus of the reflection coefficients are presented graphically
for different values of thermodiffusion parameters. The dimensional velocities of various plane waves
are also computed for different material constants.

1. Introduction

Duhamel (1837) and Neumann (1885) introduced
the theory of uncoupled thermoelasticity. There are
two shortcomings with this theory. First, the fact
that the mechanical state of the elastic body has no
effect on the temperature is not in accordance with
the true physical experiments. Second, the heat
equation being parabolic predicts an infinite speed
of propagation for the temperature, which is not
physically admissible.

Biot (1956) developed the coupled theory of
thermoelasticity which deals with the first defect
of uncoupled theory, but shares the second defect
of uncoupled theory. In the classical theory of ther-
moelasticity, when a homogeneous isotropic elas-
tic solid is subjected to a thermal disturbance,
the effect is felt at a location far from the source,
instantaneously. This implies that the thermal
wave propagates with infinite speed, a physically
impossible result. In contrast to the conventional
thermoelasticity, nonclassical theories came into
existence during the last three decades. These the-
ories, referred to as generalized thermoelasticity,
were introduced into the literature in an attempt to

eliminate the shortcomings of the classical dynam-
ical thermoelasticity. For example, Lord and Shul-
man (1967), by incorporating a flux-rate term
into Fourier’s law of heat conduction, formulated
a generalized theory which involves a hyperbolic
heat transport equation admitting finite speed for
thermal signals. Green and Lindsay (1972), by
including temperature rate among the constitutive
variables, developed a temperature-rate-dependent
thermoelasticity that does not violate the clas-
sical Fourier law of heat conduction, when the
body under consideration has a center of symme-
try and this theory also predicts a finite speed
for heat propagation. Chandrasekharaiah (1986)
referred to this wavelike thermal disturbance as
“second sound”. The Lord and Shulman theory of
generalized thermoelasticity was further extended
by Sherief (1980) and Dhaliwal and Sherief (1980)
to include the anisotropic case. A survey article of
representative theories in the range of generalized
thermoelasticity is due to Hetnarski and Ignaczak
(1999).

Sinha and Sinha (1974) and Sinha and Elsibai
(1996a, b) studied the reflection of thermoelastic
waves from the free surface of a solid half-space and
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at the interface of two semi-infinite media in welded
contact, in the context of generalized thermoelas-
ticity. Abd-Alla and Al-Dawy (2000) studied the
reflection phenomena of SV waves in a general-
ized thermoelastic medium. Recently, Sharma et al
(2003) investigated the problem of thermoelastic
wave reflection from the insulated and isothermal
stress-free as well as rigidly fixed boundaries of a
solid half-space in the context of different theories
of generalized thermoelasticity.

Diffusion may be defined as the random walk, of
an ensemble of particles, from regions of high con-
centration to regions of lower concentration. The
study of this phenomenon is of great concern due
to its many geophysical and industrial applications.
In integrated circuit fabrication, diffusion is used
to introduce “dopants” in controlled amounts into
the semiconductor substrate. In particular, diffu-
sion is used to form the base and emitter in bipo-
lar transistors, form integrated resistors, form the
source/drain regions in Metal Oxide Semiconduc-
tor (MOS) transistors and dope poly-silicon gates
in MOS transistors. Study of the phenomenon of
diffusion is used to improve the conditions of oil
extractions (seeking ways of more efficiently recov-
ering oil from oil deposits). These days, oil compa-
nies are interested in the process of thermodiffusion
for more efficient extraction of oil from oil deposits.

Thermodiffusion in an elastic solid is due to cou-
pling of the fields of temperature, mass diffusion
and that of strain. Heat and mass exchange with
the environment during thermodiffusion in an elas-
tic solid. Using the coupled thermoelastic model,
Nowacki (1974a, b, c, 1976) developed the theory
of thermoelastic diffusion and discussed dynami-
cal problems of diffusion in solids. Dudziak and
Kowalski (1989) also discussed the theory of ther-
modiffusion for solids. Olesiak and Pyryev (1995)
discussed a coupled quasi-stationary problem of
thermodiffusion for an elastic cylinder. They stud-
ied the influences of cross effects arising from the
coupling of the fields of temperature, mass diffusion
and strain. Due to these cross effects, the thermal
excitation results in an additional mass concen-
tration and the mass concentration generates the
additional field of temperature. Recently, Sherief
et al (2004) generalized the theory of thermoelastic
diffusion, which allows the finite speeds of prop-
agation of waves. The development of generalized
theory of thermoelastic diffusion by Sherief et al
(2004) provides a chance to study the wave prop-
agation in such an interesting media. The paper is
organized as follows: In section 2, the wave propa-
gation in an isotropic, homogeneous model of elas-
tic solid with generalized thermoelastic diffusion is
studied. The governing equations are solved in x–z
plane to show the existence of three kinds of dilata-
tional waves and an SV wave. In section 3, the

expressions for reflection coefficients are obtained
for the incidence of P and SV wave at a ther-
mally insulated free surface. In the last section, a
numerical example is given to discuss the depen-
dence of reflection coefficients upon the angle of
incidence of P and SV waves as well as on thermod-
iffusion parameters. This dependence is also shown
graphically.

2. Governing equations and solution

Following, Sherief et al (2004), the governing equa-
tions for an isotropic, homogeneous elastic solid
with generalized thermodiffusion at constant tem-
perature T0 in the absence of body forces are:

(i) the equation of motion

µui,jj +(λ+µ)uj,ij −β1Θ,i−β2C,i = ρüi, (1)

(ii) the equation of heat conduction

ρcE(Θ̇ + τ0Θ̈) + β1T0(ė + τ0ë)

+ aT0(Ċ + τ0C̈) = KΘ,ii, (2)

(iii) the equation of mass diffusion

Dβ2e,ii + DaΘ,ii + Ċ + τC̈ −DbC,ii = 0, (3)

(iv) the constitutive equations

σij = 2µeij + δij(λekk − β1Θ− β2C), (4)

ρT0S = ρcEΘ + β1T0ekk + aT0C, (5)

P = −β2ekk + bC − aΘ, (6)

where β1 = (3λ + 2µ)αt and β2 = (3λ + 2µ)αc,
λ, µ are Lame’s constants, αt is the coeffi-
cient of linear thermal expansion and αc is
the coefficient of linear diffusion expansion.
Θ = T − T0, T0 is the temperature of the
medium in its natural state assumed to be such
that |Θ/T0| ¿ 1. σij are the components of
the stress tensor, ui are the components of the
displacement vector, ρ is the density assumed
independent of time, eij are the components of
the strain tensor, T is the absolute tempera-
ture, S is the entropy per unit mass, P is the
chemical potential per unit mass, C is the mass
concentration, cE is the specific heat at con-
stant strain, K is the coefficient of thermal con-
ductivity, D is thermodiffusion constant. τ0 is
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the thermal relaxation time, which will ensure
that the heat conduction equation, satisfied by
the temperature Θ will predict finite speeds of
heat propagation. τ is the diffusion relaxation
time, which will ensure that the equation, sat-
isfied by the concentration C will also predict
finite speeds of propagation of matter from one
medium to the other. The constants a and b
are the measures of thermodiffusion effects and
diffusive effects, respectively. The superposed
dots denote derivative with respect to time.

For two-dimensional motion in x–z plane, the
equations (1)–(3) are written as

(λ + 2µ)u1,11 + (µ + λ)u3,13 + µu1,33

− β1Θ,1 − β2C,1 = ρü1, (7)

µu3,11 + (µ + λ)u1,13 + (λ + 2µ)u3,33

− β1Θ,3 − β2C,3 = ρü3, (8)

K(Θ,11 + Θ,33) = ρcEτmΘ̇

+ β1T0τmė + aT0τmĊ, (9)

Dβ2(e,11 + e,33) + Da(Θ,11 + Θ,33)

−Db(C,11 + C,33) + τnĊ = 0, (10)

where τm = 1 + τ0
∂
∂t

and τn = 1 + τ ∂
∂t

. The dis-
placement components u1 and u3 may be written
in terms of potential functions φ and ψ as

u1 =
∂φ

∂x
− ∂ψ

∂z
, u3 =

∂φ

∂z
+

∂ψ

∂x
. (11)

Using (11) into equations (7)–(10), we obtain

µ∇2ψ = ρψ̈, (12)

(λ + 2µ)∇2φ− β1Θ− β2C = ρφ̈, (13)

K(Θ,11 + Θ,33) = ρcEτmΘ̇ + β1T0τm

∂

∂t
∇2φ

+ aT0τmĊ, (14)

Dβ2∇4φ + Da(Θ,11 + Θ,33)−Db(C,11 + C,33)

+ τnĊ = 0. (15)

Equation (12) is uncoupled, whereas the equations
(13)–(15) are coupled in φ, Θ and C. From equa-
tions (12)–(15), we see that while the P wave is

affected due to the presence of thermal and mass
diffusion waves, the SV remains unaffected. The
solution of equation (12) corresponds to the prop-
agation of SV wave with velocity v4 =

√
µ/ρ.

Solutions of the equations (13)–(15) are now
sought in the form of the harmonic travelling wave

{φ, Θ, C} = {φ0, Θ0, C0}eιk(x sin θ+z cos θ−vt),
(16)

in which v is the phase speed, k is the wave num-
ber, (sin θ, cos θ) denotes the projection of the
wave normal onto the x–z plane. The homogeneous
system of equations in φ0, Θ0, and C0, obtained
by inserting (16) into equations (13)–(15), admits
non-trivial solutions and enables one to conclude
that ξ satisfies the cubic equation

ξ3 + Lξ2 + Mξ + N = 0, (17)

where

ξ = ρv2,

L = −(ε + εε2ε1
2 + d1 + d2 + λ + 2µ),

M = (λ + 2µ)(d1 + d2 + εε2ε1
2)

+ d1d2 + d2ε− 2εε1ε2 − ε2,

N = −d1d2(λ + 2µ) + ε2d1,

d1 = K/cEτm
1, d2 = ρDb/τn

1,

ε = β1
2T0/ρcE, ε1 = −a/β1β2,

ε2 = ρDβ2
2/τn

1,

τm
1 = τ0 + (ι/ω), τn

1 = τ + (ι/ω).

Equation (17) is cubic in ξ. The roots of this equa-
tion give three values of ξ. Each value of ξ corre-
sponds to a wave if v2 is real and positive. Hence,
three positive values of v will be the velocities of
propagation of three possible waves. Using Car-
dan’s method, equation (17) is written as:

Λ3 + 3HΛ + G = 0, (18)

where

Λ = ξ +
L

3
, H =

3M − L2

9
,

G =
27N − 9LM + 2L3

27
. (19)
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For all the three roots of equation (18) to be real,
∆0 (= G2 + 4H3) should be negative. Assuming
the ∆0 to be negative, we obtain the three roots of
equation (18) as

Λn = 2
√
−H cos

(
φ + 2π(n− 1)

3

)
, (n=1, 2, 3),

(20)

where

φ = tan−1

(√
|∆0|
−G

)
. (21)

Hence,

vn =

√(
Λn − L

3

) /
ρ, (n = 1, 2, 3), (22)

are velocities of propagation of the three kinds of
possible dilatational waves. The waves with veloc-
ities v1, v2, v3 (v1 > v3 > v2) correspond to P
wave, Mass Diffusion (MD) wave and Thermal (T)
wave, respectively. This fact may be verified, when
we solve the equation (17), using a computer pro-
gram of Cardan’s method. If we neglect thermal
effects, i.e., for ε = 0, d1 = 0, the cubic equation
(17) reduces to a quadratic equation whose roots
are as

2ρv2 = [d2 + (λ + 2µ)]±
√

[d2 − (λ + 2µ)]2 + 4ε2,

(23)

where the positive and negative signs correspond
to P wave and MD wave, respectively. Moreover,
the MD wave exists if β2

2 < b(λ+2µ). Similarly, if
we neglect the diffusion effects, i.e., for ε1 = ε2 =
d2 = 0, the equation (17) reduces to a quadratic
equation whose roots are as

2ρv2 = [{d1 + (λ + 2µ)}+ ε]

±
√

[{d1 − (λ + 2µ)− ε]2 + 4εd1, (24)

where the positive and negative signs correspond
to P wave and T waves, respectively. The T
wave exists, if d1 > 0, which is true. These two-
dimensional roots are in agreement with the
non-dimensional roots obtained by Abd-alla and
Al-Dawy (2000) for Lord and Shulman theory. In
absence of thermodiffusion effects, the equation

(17) corresponds to P wave with velocity v1 =√
(λ + 2µ)/ρ.
It may be pointed here that an analogy may exist

between the present three dilatational waves and
the three kinds of P waves obtained by Lu and
Hangya (2004), as an analogy exists between ther-
moelastic propagation and poroelastic propagation
(Biot 1956; Norris 1992). P , T and MD waves may
correspond to the P1, P2 and P3 waves obtained
by Lu and Hangya (2004). Here P and P1 waves
correspond to P1 wave in Biot’s theory. Also, T
and P2 waves correspond to diffusive P2 wave in
Biot’s theory. MD wave is related to mass diffusion,
where as P3 wave is related to capillary pressure
effects.

3. Reflection coefficients

In the previous section, it has been discussed that
there exists three kinds of dilatational waves and
an SV wave in an isotropic elastic solid with gen-
eralized thermodiffusion. Any incident wave at the
interface of two elastic solid bodies, in general,
produce dilatational and rotational waves in both
media (see for example, Ewing et al 1957; Ben-
Menahem and Singh 1981). Let us now consider an
incident P or SV wave (figure 1). The boundary
conditions at the free surface z = 0 are satisfied, if
the incident P or SV wave gives rise to a reflected
SV and three reflected dilatational waves (i.e., P,
MD and T waves). The surface z = 0 is free from
surface tractions and is assumed thermally insu-
lated so that there is no variation of temperature
and concentration on it. Therefore, the boundary
conditions on z = 0 may be written as

σzz = 0, σzx = 0,
∂Θ
∂z

= 0,

∂C

∂z
= 0, on z = 0. (25)

Figure 1. Schematic diagram for the problem (for incident
P wave, θ0 = θ1, for incident SV wave, θ0 = θ4).
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The appropriate displacement potentials φ and ψ,
temperature Θ and concentration C are taken in
the form

ψ = B0 exp[ιk4(x sin θ0 + z cos θ0)− ιωt)]

+ B1 exp[ιk4(x sin θ4−z cos θ4)−ιωt)], (26)

φ = A0 exp[ιk1(x sin θ0 + z cos θ0)− ιωt)]

+ A1 exp[ιk1(x sin θ1 − z cos θ1)− ιωt)]

+ A2 exp[ιk2(x sin θ2 − z cos θ2)− ιωt)]

+ A3 exp[ιk3(x sin θ3 − z cos θ3)− ιωt], (27)

Θ = ζ1A0 exp[ιk1(x sin θ0 + z cos θ0)− ιωt)]

+ ζ1A1 exp[ιk1(x sin θ1 − z cos θ1)− ιωt)]

+ ζ2A2 exp[ιk2(x sin θ2 − z cos θ2)− ιωt)]

+ ζ3A3 exp[ιk3(x sin θ3−z cos θ3)−ιωt], (28)

C = η1A0 exp[ιk1(x sin θ0 + z cos θ0)− ιωt)]

+ η1A1 exp[ιk1(x sin θ1 − z cos θ1)− ιωt)]

+ η2A2 exp[ιk2(x sin θ2 − z cos θ2)− ιωt)]

+ η3A3 exp[ιk3(x sin θ3−z cos θ3)−ιωt], (29)

where the wave normal of the incident P or SV
wave makes angle θ0 with the positive direction of
the z-axis, and those of reflected P, MD, T and SV
waves make θ1, θ2, θ3 and θ4 with the same direc-
tion, and

ζi = ki
2Gi(ρvi

2 − λ− 2µ),

ηi = ki
2Hi(ρvi

2 − λ− 2µ), (i = 1, 2, 3) (30)

and

Gi =
ερvi

2(ε1ε2 − d2 + ρvi
2)

d1ε2 + ρvi
2[ε(d2 − ρvi

2)− ε2 − 2εε1ε2]
, (31)

Hi =
ε2[ρvi

2(εε1 + 1)− d1]
d1ε2 + ρvi

2[ε(d2 − ρvi
2)− ε2 − 2εε1ε2]

. (32)

The ratios of the amplitudes of the reflected
waves to the amplitude of the incident P
wave, namely B1/A0, A1/A0, A2/A0 and A3/A0

give the reflection coefficients for reflected SV,
reflected P, reflected MD and reflected T waves,
respectively. Similarly for incident SV wave,
B1/B0, A1/B0, A2/B0 and A3/B0 are the reflection
coefficients for reflected SV, reflected P, reflected
MD and reflected T waves, respectively. The wave

number k1, k2, k3, k4 and the angles θ1, θ2, θ3, θ4 are
connected by the relation

k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4, (33)

at surface z = 0. The relation (33) may also be
written in order to satisfy the boundary conditions
(25) as

sin θ1

v1

=
sin θ2

v2

=
sin θ3

v3

=
sin θ4

v4

, (34)

where v4 =
√

µ/ρ is the velocity of SV wave and
vi, (i = 1, 2, 3) are the velocities of three kinds of
reflected dilatational waves. Using the potentials
given by (26)–(29) in boundary conditions (25), we
obtain a system of four non-homogeneous equa-
tions

ΣaijZj = bi, (i, j = 1, 2, . . . , 4), (35)

where

a11 = −
[
λ + 2µcos2θ1 + β1

ζ1

k1
2 + β2

η1

k1
2

](
k1

l

)2

,

a12 = −
[
λ + 2µcos2θ2 + β1

ζ2

k2
2 + β2

η2

k2
2

](
k2

l

)2

,

a13 = −
[
λ + 2µcos2θ3 + β1

ζ3

k3
2 + β2

η3

k3
2

](
k3

l

)2

,

a14 = µ sin 2θ4

(
k4

l

)2

,

a21 = sin 2θ1

(
k1

l

)2

,

a22 = sin 2θ2

(
k2

l

)2

,

a23 = sin 2θ3

(
k3

l

)2

,

a24 = cos 2θ4

(
k4

l

)2

,

a31 = cos θ1

ζ1

k1
2

(
k1

l

)3

,

a32 = cos θ2

ζ2

k2
2

(
k2

l

)3

,
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a33 = cos θ3

ζ3

k3
2

(
k3

l

)3

,

a34 = 0,

a41 = cos θ1

ζ1

k1
2

(
k1

l

)3

,

a42 = cos θ2

ζ2

k2
2

(
k2

l

)3

,

a43 = cos θ3

ζ3

k3
2

(
k3

l

)3

,

a44 = 0.

For incident P wave

b1 = −a11, b2 = a21, b3 = a31,

b4 = a41, l = k1.

For incident SV wave

b1 = a14, b2 = −a24, b3 = a34,

b4 = a44, l = k4,

and Z1, Z2, Z3, Z4 are reflection coefficients of
reflected P, MD, T and SV waves, respectively.
In the absence of thermodiffusion, these reflection
coefficients reduce to:

For incident P wave

A1

A0

=
sin 2θ1 sin 2θ4 − (v1/v4)

2 cos2 2θ4

sin 2θ1 sin 2θ4 + (v1/v4)
2 cos2 2θ4

, (36)

B1

A0

=
−2(v1/v4) sin 2θ1 cos 2θ4

sin 2θ1 sin 2θ4 + (v1/v4)
2 cos2 2θ4

. (37)

For incident SV wave

A1

B0

=
(v1/v4) sin 4θ4

sin 2θ1 sin 2θ4 + (v1/v4)
2 cos2 2θ4

, (38)

B1

B0

=
sin 2θ1 sin 2θ4 − (v1/v4)

2 cos2 2θ4

sin 2θ1 sin 2θ4 + (v1/v4)
2 cos2 2θ4

, (39)

which are the same as those given by Ben-
Menahem and Singh (1981), if θ1, θ4, v1 and v4 are

replaced by e, f , α and β, respectively. It may also
be mentioned that the MD and T waves will dis-
appear in the absence of thermodiffusion.

4. Numerical results

For computational work, the following material
constants at T0 = 27◦C are considered for an elas-
tic solid with generalized thermodiffusion

λ = 5.775× 1011 dyne/cm2
,

µ = 2.646× 1011 dyne/cm2
,

ρ = 2.7 gm/cm3
, cE = 2.361 cal/gm◦C,

K = 0.492 cal/cm s◦C,

τ0 = 0.05 s, τ = 0.04 s, αt = 0.05,

αc = 0.06, ω = 2 s−1, a = 0.005,

b = 0.05, D = 0.5.

The cubic equation (17) is solved by the com-
puter program of Cardan method to obtain the
numerical values of velocities of three dilatational
waves viz., P, MD and T waves. The variations of
velocities of these waves are shown graphically in
figures 2–6 for various material parameters. The P
wave is found to be the fastest wave, whereas MD

Figure 2. Variations of velocities of dilatational waves with
thermodiffusion parameter “a”.
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Figure 3. Variations of velocities of dilatational waves with
diffusion parameter “b”.

Figure 4. Variations of velocities of dilatational waves with
thermodiffusion constant D.

wave is found to be the slowest wave. All the three
dilatational waves are found to depend on ther-
modiffusion parameters “a”. The velocities of P
and T waves increase with the increase in value of
“a”, whereas the velocity of MD wave decreases.
This dependence is shown graphically in figure 2.
Similarly, the dependence of velocities on diffusion
parameter “b”, thermodiffusion constant ‘D’, ther-
mal relaxation time and diffusion relaxation time
are shown in figures 3–6, respectively. The system

Figure 5. Variations of velocities of dilatational waves with
thermal relaxation time.

Figure 6. Variations of velocities of dilatational waves with
diffusion relaxation time.

(35) of four non-homogeneous equations is solved
to obtain the numerical values of reflection coeffi-
cients of various reflected waves for incidence of P
as well as SV waves.

4.1 Incident P wave

The reflection coefficients are computed for the
angle of incidence varying from 1◦ to 90◦ for ther-
modiffusion constant D = 0.1, 0.5 and 0.9. These
numerical values of reflection coefficients are shown
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Figure 7. Variations of reflection coefficients of SV waves
with the angle of incidence of P wave for D = 0.1, 0.5 and
0.9.

Figure 8. Variations of reflection coefficients of P waves
with the angle of incidence of P wave for D = 0.1, 0.5 and
0.9.

graphically in figures 7–10 where solid lines, small
dashed lines and long dashed lines correspond to
D = 0.1, D = 0.5 and D = 0.9, respectively.

Figure 7 shows the reflection coefficients for
reflected SV waves for D = 0.1, D = 0.5 and
D = 0.9. The reflection coefficient for each value
of D, first increases from its minima to maxima

Figure 9. Variations of reflection coefficients of MD waves
with the angle of incidence of P wave for D = 0.1, 0.5 and
0.9.

Figure 10. Variations of reflection coefficients of T waves
with the angle of incidence of P wave for D = 0.1, 0.5 and
0.9.

and then decreases to its minima. Figures 8–10
show the variations of reflection coefficients for
reflected P, MD and T, respectively. These coef-
ficients decrease with the increase in the angle
of incidence. The comparison among solid, small
dashed and long dashed lines in figures 7–10, shows
the changes in reflection coefficients due to ther-
modiffusion constant ‘D’.
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Figure 11. Variations of reflection coefficients of SV waves
with the angle of incidence of SV wave for a = 0.005, 0.05
and 0.10.

Figure 12. Variations of reflection coefficients of P waves
with the angle of incidence of SV wave for a = 0.005, 0.05
and 0.1.

4.2 Incident SV wave

The reflection coefficients are computed for the
angle of incidence varying from 1◦ to 35◦ for ther-
modiffusion parameter a = 0.005, 0.05 and 0.1.
These numerical values of reflection coefficients
are shown graphically in figures 11–14 where solid
lines, small dashed lines and long dashed lines cor-

Figure 13. Variations of reflection coefficients of MD waves
with the angle of incidence of SV wave for a = 0.005, 0.05
and 0.1.

Figure 14. Variations of reflection coefficients of T waves
with the angle of incidence of SV wave for a = 0.005, 0.05
and 0.1.

respond to a = 0.005, a = 0.05 and a = 0.1 respec-
tively.

Figure 11 shows the reflection coefficients for
reflected SV waves for a = 0.005, a = 0.05 and
a = 0.1. For a = 0.005, the value of reflection coef-
ficient of reflected wave is one beyond 34◦. Simi-
larly, it is one beyond 31◦ and 30◦ for a = 0.05
and a = 0.1, respectively. Figures 12–14 show the
variations for reflected dilatational waves viz., P ,
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MD and T , respectively. From these figures, it may
be noticed that the reflection coefficients at each
angle of incidence are affected by thermodiffusion
parameter a.

Finally, it may be concluded that there exist
three kinds of dilatational waves, viz., P wave,
Mass Diffusion wave, Thermal wave alongwith a
rotational wave travelling with distinct velocities
for two-dimensional motion in an elastic solid with
thermodiffusion. The reflection coefficients for the
incidence of P and SV waves are computed for a
certain range of angle of incidence and for vari-
ous thermodiffusion parameters. These coefficients
depend on the angle of incidence, thermodiffu-
sion parameters, and other material constants.
For example, the change in value of thermodif-
fusion parameters D and “a” have considerable
impact on the reflection coefficients at certain
angles of incidence. The present model of elas-
tic solid with thermodiffusion becomes more inter-
esting due to the existence of three dilatational
waves. The present theoretical results may provide
some useful information for experimental scien-
tists/researchers/seismologists working in the area
of wave propagation in elastic solids.
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