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Abstract. The propagation of plane waves in fibre-reinforced, anisotropic, elas-
tic media is discussed. The expressions for the phase velocity of §uag) and
guasisV (gSV) waves propagating in a plane containing the reinforcement direc-
tion are obtained as functions of the angle between the propagation and reinforce-
ment directions. Closed form expressions for the amplitude ratiosHargl ¢V

waves reflected at the free surface of a fibre-reinforced, anisotropic, homogeneous,
elastic half-space are obtained. These expressions are used to study the variation
of the amplitude ratios with angle of incidence. It is found that the reinforcement
has a significant effect on the amplitude ratios and the critical angle.
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1. Introduction

Fibre-reinforced composites are used in a variety of structures due to their low weight and
high strength. In most previous investigations on the reflection of waves at the free surface
of an elastic half-space, the effect of reinforcement has been neglected. The characteristic
property of a reinforced composite is that its components act together as a single anisotropic
unit as long as they remain in the elastic condition. Sengupta & Nath (2001) discussed the
problem of surface waves in fibre-reinforced anisotropic elastic media. They expressed the
plane strain displacement components in terms of two scalar potentials to decouple the plane
motion into gP and ¢V waves. Singh (2002) showed that, for wave propagation in fibre-
reinforced anisotropic media, this decoupling cannot be achieved by the introduction of the
displacement potentials. In the present paper, the problem of the reflectigh afidjcs vV

waves at the free surface of a fibre-reinforced anisotropic elastic half-space is studied by a
direct method without the introduction of potentials. Reflection of plane wave at the free
surface of an anisotropic half-space has been studied, among others, by Ditri & Rose (1992),
Zilmer et al (1997) and Singh & Khurana (2002). Hashin & Rosen (1964) gave the elastic
moduli for fibre-reinforced materials.



2 Baljeet singh and Sarva Jit Singh

2. Basic equations

The constitutive equations for a fibre-reinforced linearly elastic anisotropic medium with
respect to the reinforcement directiamre (Belfieldet al 1983)

0ij = hexdij + 2ure;j + o(aramerndii + exraia;)
+ 2(up — pr)(aiarer; + ajager;) + Bagamemaia;, 1)

whereo;; are the components of stress; are the components of straih; ur are elastic
constantsy, B, (ur, — jur) are reinforcement parameters ang (ay, az, as); az +as+a2 =

1. We choose the fibre-directionas= (1, 0, 0). The strains can be expressed in terms of the
displacements; as

1 Bui+8uj
i = -\ — -— 1.
/ 2 8xj 8)(,'

For plane strain deformation in thex,-plane,d/dx3; = 0, uz = 0. Equation (1) then yields

ouq ous
o11=A11— +App—,
8X1 8)62
8u1 8M2
022 = App— + App—,
8)61 8x2
d 0
033 = 1412ﬂ + kﬂ,
axl 3x2
aul 3142
012 = UL <8x2 + 8x1> ,
o31=032=0, (2

where

A =A+20+4up —2ur + B,

Ap=A+a, Ax=Ai+2ur. (3)
The equations of motion without body forces are

80,~j 82u,- .
— = p—l(i=12073), 4
o, P (i ) 4

using the summation convention. From (2) we note that the third equation of motion in (4) is
identically satisfied and the first two equations become

Aﬂ@ + Bzﬂ + Blﬂ = ,0& (5)
0x2 dxdy 9y? ar2’

A2282_v + Bzﬂ + Blaz_v = p& (6)
0y?2 0xdy 0x2 0r2’

where we have used the notatian= x, x = y, us = u, up = v, By = ur, B = a+A+ur.
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3. Propagation of plane waves

Consider a fibre-reinforced, homogeneous, elastic medium occupying the halfyspae
For plane waves of circular frequen@ywave numbek and phase velocity, propagating in
thexy-plane and incident at the free boundary= 0 at an angl® with the y-axis (figure 1),
we may assume

u=UexpiP), v=VexpiP), 7)
whereU, V are the amplitude factors and,

Py = wt — k(x Sing — y cosh),
is the phase factor. For waves reflectegd at 0, we assume

u=UexpiPy), v=1VexpiP), (8)
where

P> = wt — k(x Sing + y cosh)

is the phase factor associated with reflected waves. Making use of (7) or (8) in (5) and (6),
we obtain

—(D1— pc®)U + BysinfcosdV =0, 9)
+B,sing cosdU — (D, — pc?)V =0, (10)

where the upper sign corresponds to the incident waves and the lower sign corresponds to the
reflected wavesD;, D, are given by

D1(0) = Ay1Sin? 6 + By cog 6,
Dy(0) = Az, c0S 6 + By Si 6. (11)
Equations (9) and (10) can have a nontrivial solution only if

—(D1— pc?) +Bysinfcoso

. - | =0 (12)
+Bysind cosd —(Dy — pc?)

y Figure 1. Geometry of the problem.
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The solutions of the quadratic equation (12)pitf are
20c?(0) = (D1 + Do) £ [(D1 — D2)? + 4B2 sir? 6 cos 0]Y/2. (13)

Thus, in this two-dimensional model of the fibre-reinforced anisotropic medium, there are
two types of plane waves whose phase velocities depend on the angle of indiddrete
c1(0) andc,(0) be the values of associated with the upper and the lower signs respectively,
in (13). On neglecting reinforcement parameteisandc, reduce to the usual velocities of

P andS waves in an isotropic material with Lame constantg; and density. We call the
waves with velocitieg1 andc, as quasiP and quasiS waves respectively. We next discuss
the reflection of these waves at the free boundasy 0.

4. Quasi-P waves incident at the free boundary

If quasi-P waves are incident at the boundary= 0 of the fibre-reinforced anisotropic semi-
infinite medium, we get quagr-and quasisV waves as reflected waves. We may, therefore,
assume the total displacement to be of the form

u = Upexp(i R1) + U1 expi S1) + U, exp(i S2), (14)

v = Vopexpi Ry) + Viexp(iS1) + VaexpiSz), (15)
where

R1 = (w/c1)[c1t — (x sine — y cose)],

S1 = (w/c1)[c1t — (x Sine + y cose)],

S2 = (w/c2)[cat — (x sin f 4 y cosf)], (16)

are the phase factors associated with the incident gRiaseflected quasik and reflected
quasisSV waves,e being the angle which incident and reflected quRsivaves make
with y-axis andf is the angle which the reflected quadi- waves make with the-axis.

Uy, Vo; Uy, V1; andU,, V, are the amplitude factors associated with the incident gBasi-
reflected quasP and reflected quasiV waves respectively. Since the incident and reflected
waves in (14) and (15) must satisfy the equations of motion (5) and (6), we have, as in (9),

—[D1(e) — ,oc%(e)]Uo + By sinecoseVy = 0,
—[D1(e) — pcz(e)]Uy — Bz sine coseV; = 0,
~[D1(f) — pcd(f)]Uz2 — By sin f cosfV, = 0. (17)

It may be noted that we can obtain another set of similar equations corresponding to (10).
But this set will give the same results as the set in (17) due to consistency condition (12).
Equations (17) may be written as

Uo = n1Vo, Up=—-mVi, Uz = —n2Va, (18)
where

n1 = Bzsine cose/[Di(e) — pci(e)],

n2 = BzSin f cosf/[D1(f) — pe5(f)]- (19)
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The total displacement field in (14) and (15) must satisfy the boundary conditions,
op1=02=0, at y=0. (20)
Making use of (2), (14) and (15) in the above boundary conditions, we obtain

[(cose/c1)Ug + (— sine/cy) Vo] expli S1(x, 0)]

+ [(—cose/c1)Us + (—sine/c1) V1] expli S1(x, 0)]

+ [(—cosf/c2)Uz + +(—sin f/cz) Vo] expli Sa(x, 0)], (21)
[ +a)(=sine/c1)Up + (A + 2uur)(COSe/c1) Vo] €Xpli S1.(x, 0)]

+ [+ a)(=sine/c1)Us + (A + 2ur)(— cose/c1) V1] expli S1(x, 0)]

+ [ + @) (—=sin f/c2)Uz + (A + 2u7) (— COSf/c2) Vo] €xpli S2(x, 0)],

(22)
where
c1=ci(e), c2=ca(f), (23)
and where we have used the result
R1(x,0) = S1(x, 0). (24)
Since (21) and (22) must be satisfied for all values ,ofe have
S1(x, 0) = S2(x, 0), (25)

which, on using (16), gives

sine/ci(e) = sin f/ca(f). (26)

This is the form of Snell’s law for the fibre-reinforced anisotropic medium. Equations (21)
and (22), with the help of (18) and (25), may be written as

miVo+m1Vi+moVo =0, (27)
niVo—niVi+noVo =0, (28)
where
m1 = (1 COSe — Sine)/cy,
my = (n2€0Sf — sin f)/cz,
ny = [(A 4+ a)nysine — (A + 2u7) cose] /c1,
ny = —[(A +e)nzsinf — (A + 2ur) cosf]/co. (29)

The amplitude ratios for the reflected waves are obtained from (18), (27) and (28) as

U1/ Uo = (minp — mony)/A,  Uz/Ug = 2nomani/mA, (30)
Vi/ Vo = (mony — mina) /A, Vo/ Vo = —2mini/A, (31)
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where
D = mino + mon;. (32)

Equation (30) gives the amplitude ratios for the horizontal component of the displacement.
Similarly, (31) gives the amplitude ratios for the vertical component. From (30) and (31),

we obtain the following expressions for the amplitude ratios for the total displacement for
reflected @ and ¢§V waves when & waves are incident at the free boundary

ZEP = |(many — minz) /Al (33)
Z5S = |12miny/A|[(n5 + /(3 + D]Y2. (34)

5. Quasi-SV waves incident at the free boundary

We assume that the incident and reflected q¥asiwaves make an anglg with the y-axis
and the reflected quagi-waves make an angewith this axis. Amplitude ratios in this case
may be obtained as in the previous section. We find

U1/ Ug = 2numaonz/m2A, Uz /UQ = (mon1 — minp) /A, (35)
Vi/Vo = —2monz/A,  Vu/Vo = (miny — many)/A, (36)

wherelUy, V, are the amplitude factors of the incident qua$i-waves.
From (35) and (36), we obtain the amplitude ratios for the total displacement for reflected
gP and ¢V waves as

73 = | 2mana/ A% + 1)/ (3 + DIVZ, (37)
Z3% = |(minz — man) /Al (38)

6. Numerical results and discussion

To study the effect of reinforcement on wave propagation, we use the following numerical
values for the physical constants

A = 7-59 x 10" dyne/cnd, wr = 1-89 x 10* dyne/cnt,
pr = 2-45x 10" dyne/cn?, o = —1.28 x 10" dyne/cn?,
B = 0-32 x 10'* dyne/cn?, o = 7-8gm/cnt.

Making use of Snell’s law given by (26), the angles of reflection fBrand ¢¢V waves are
computed for various values of the angle of incidence $¥ qand gP waves respectively.
Figure 2 gives the angle of reflection of SV waves for various values of the angle of incidence
of gP waves with and without reinforcement. For the present choice of the physical constants,
the angle of reflection for§)V waves in the presence of reinforcement increases more rapidly
than in the absence of reinforcement. Figure 3 gives the angle of reflectiah whyes for
various values of the angle of incidence ¢figwaves with and without reinforcement.

The amplitude ratios for reflectedPgand oV waves are computed for incidenPcand
gSV waves. The variations of these amplitude ratios with the angle of incidence are shown
graphically in figures 4 and 5 for incidenPgand o'V waves, respectively. The dotted lines
with and without crosses represent the variations of the amplitude ratios for reflected waves in
the absence of reinforcement. The solid lines with and without crosses represent the amplitude
ratios with reinforcement.
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6.1 Incident quasiP wave

The variations of the amplitude ratios for reflectel gnd o8V waves with the angle of
incidence of @ waves are shown in figure 4 by solid lines with crosses and solid lines,
respectively. The amplitude ratio for reflectet ¢ one ate = 0° ande = 90° and attains

90—
With reinforcement K
~~~~~ Without reinforcement !
¢

g 727 K
o /
53 ,/
© ’
£ .
= 54 L
2 P
S
° P
e i
® 36 -
G e
2 .
[=2) P
C 5 e
< -

18— %

0 T T T 1 Figure 3. Variation of the angle

0 7 14 21 28 of reflection of gP waves with the

Angle of incidence (f) in degrees angle of incidence of §fV waves.



1.0

0.8

Amplitude ratio
o
o
{

©
~
|

0.2~

Baljeet singh and Sarva Jit Singh

seex Fibre-reinforced (qP wave)
[l %% »xx Isotropic (P wave)
Fibre-reinforced (qSV wave)
————— Isotropic (SV wave)

0.0
0

]

|
72

18

36 54

Angle of incidence (e) in degrees

90

Figure 4. Variation of the ampli-
tude ratios for reflected waves
with the angle of incidence ofR
waves.

its minimum ate = 65°. Also, the amplitude ratio for reflecteds§ has its value zero at
e = 0° ande = 90° and attains its maximum at= 48°. A comparison between solid and
dotted lines reveals that the effect of reinforcement on amplitude ratios of refleBtadd)

gSV waves is significant.
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6.2 Incident quasiSV wave

The variations of the amplitude ratios for reflectedl gnd ¢V waves with the angle of
incidence of ¢V wave are shown in figure 5 by solid lines with crosses and solid lines
respectively. The amplitude ratio for reflectefl g zero atf = 0° and it attains its maximum
nearf = 28. Beyondf = 28, it is zero for all angles of incidence. Thus the critical angle
for reflected ® waves is 28. Also, the amplitude ratio for reflectedS§ wave is one at

f = 0° and decreases to its minimumjat= 25°. For the range 25< f < 28, itincreases.
Beyond f = 28, it is one for all angles of incidence. The effect of reinforcement as defined
by the physical constants chosen is to increase the critical angle from abdatéhbut 28.

7. Conclusions

Equations (33), (34), (37) and (38) give the amplitude ratios of the reflected waves when
gP and ofV waves are incident at the free surface of a fibre-reinforced, homogeneous,
anisotropic, elastic half-space. It is assumed that the plane of incidence contains the rein-
forcement direction. We have verified that, on putting the reinforcement paramgtérs
and(uy — ur) zero each, the amplitude ratios obtained in the present study coincide with
the amplitude ratios for an isotropic half-space as given by Ben-Menahem & Singh (1981,
pp 93-95). We have found that the reinforcement has a significant effect on the amplitude
ratios. Further, the reinforcement alters the critical angle considerably.

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi for
financial support to SJS.
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