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Abstract. The propagation of plane waves in fibre-reinforced, anisotropic, elas-
tic media is discussed. The expressions for the phase velocity of quasi-P (qP) and
quasi-SV (qSV ) waves propagating in a plane containing the reinforcement direc-
tion are obtained as functions of the angle between the propagation and reinforce-
ment directions. Closed form expressions for the amplitude ratios for qP and qSV

waves reflected at the free surface of a fibre-reinforced, anisotropic, homogeneous,
elastic half-space are obtained. These expressions are used to study the variation
of the amplitude ratios with angle of incidence. It is found that the reinforcement
has a significant effect on the amplitude ratios and the critical angle.
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velocity; reflection.

1. Introduction

Fibre-reinforced composites are used in a variety of structures due to their low weight and
high strength. In most previous investigations on the reflection of waves at the free surface
of an elastic half-space, the effect of reinforcement has been neglected. The characteristic
property of a reinforced composite is that its components act together as a single anisotropic
unit as long as they remain in the elastic condition. Sengupta & Nath (2001) discussed the
problem of surface waves in fibre-reinforced anisotropic elastic media. They expressed the
plane strain displacement components in terms of two scalar potentials to decouple the plane
motion into qP and qSV waves. Singh (2002) showed that, for wave propagation in fibre-
reinforced anisotropic media, this decoupling cannot be achieved by the introduction of the
displacement potentials. In the present paper, the problem of the reflection of qP and qSV

waves at the free surface of a fibre-reinforced anisotropic elastic half-space is studied by a
direct method without the introduction of potentials. Reflection of plane wave at the free
surface of an anisotropic half-space has been studied, among others, by Ditri & Rose (1992),
Zilmer et al (1997) and Singh & Khurana (2002). Hashin & Rosen (1964) gave the elastic
moduli for fibre-reinforced materials.
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2. Basic equations

The constitutive equations for a fibre-reinforced linearly elastic anisotropic medium with
respect to the reinforcement directiona are (Belfieldet al1983)

σij = λekkδij + 2µT eij + α(akamekmδij + ekkaiaj )

+ 2(µL − µT )(aiakekj + ajakeki) + βakamekmaiaj , (1)

whereσij are the components of stress;eij are the components of strain;λ, µT are elastic
constants;α, β, (µL −µT ) are reinforcement parameters anda = (a1, a2, a3); a2

1 +a2
2 +a2

3 =
1. We choose the fibre-direction asa = (1, 0, 0). The strains can be expressed in terms of the
displacementsui as

eij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
.

For plane strain deformation in thex1x2-plane,∂/∂x3 ≡ 0, u3 = 0. Equation (1) then yields

σ11 = A11
∂u1

∂x1
+ A12

∂u2

∂x2
,

σ22 = A12
∂u1

∂x1
+ A22

∂u2

∂x2
,

σ33 = A12
∂u1

∂x1
+ λ

∂u2

∂x2
,

σ12 = µL

(
∂u1

∂x2
+ ∂u2

∂x1

)
,

σ31 = σ32 = 0, (2)

where

A11 = λ + 2α + 4µL − 2µT + β,

A12 = λ + α, A22 = λ + 2µT . (3)

The equations of motion without body forces are

∂σij

∂xj

= ρ
∂2ui

∂t2
(i = 1, 2, 3), (4)

using the summation convention. From (2) we note that the third equation of motion in (4) is
identically satisfied and the first two equations become

A11
∂2u

∂x2
+ B2

∂2v

∂x∂y
+ B1

∂2u

∂y2
= ρ

∂2u

∂t2
, (5)

A22
∂2v

∂y2
+ B2

∂2u

∂x∂y
+ B1

∂2v

∂x2
= ρ

∂2v

∂t2
, (6)

where we have used the notationx1 = x, x2 = y, u1 = u, u2 = v, B1 = µL, B2 = α+λ+µL.
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3. Propagation of plane waves

Consider a fibre-reinforced, homogeneous, elastic medium occupying the half-spacey ≥ 0.
For plane waves of circular frequencyω, wave numberk and phase velocityc, propagating in
thexy-plane and incident at the free boundaryy = 0 at an angleθ with they-axis (figure 1),
we may assume

u = U exp(iP1), v = V exp(iP1), (7)

whereU, V are the amplitude factors and,

P1 = ωt − k(x sinθ − y cosθ),

is the phase factor. For waves reflected aty = 0, we assume

u = U exp(iP2), v = V exp(iP2), (8)

where

P2 = ωt − k(x sinθ + y cosθ)

is the phase factor associated with reflected waves. Making use of (7) or (8) in (5) and (6),
we obtain

−(D1 − ρc2)U ± B2 sinθ cosθV = 0, (9)

±B2 sinθ cosθU − (D2 − ρc2)V = 0, (10)

where the upper sign corresponds to the incident waves and the lower sign corresponds to the
reflected waves.D1, D2 are given by

D1(θ) = A11 sin2 θ + B1 cos2 θ,

D2(θ) = A22 cos2 θ + B1 sin2 θ. (11)

Equations (9) and (10) can have a nontrivial solution only if∣∣∣∣∣
−(D1 − ρc2) ±B2 sinθcosθ

±B2 sinθ cosθ −(D2 − ρc2)

∣∣∣∣∣ = 0. (12)

Figure 1. Geometry of the problem.
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The solutions of the quadratic equation (12) inρc2 are

2ρc2(θ) = (D1 + D2) ± [(D1 − D2)
2 + 4B2

2 sin2 θ cos2 θ ]1/2. (13)

Thus, in this two-dimensional model of the fibre-reinforced anisotropic medium, there are
two types of plane waves whose phase velocities depend on the angle of incidenceθ . Let
c1(θ) andc2(θ) be the values ofc associated with the upper and the lower signs respectively,
in (13). On neglecting reinforcement parameters,c1 andc2 reduce to the usual velocities of
P andS waves in an isotropic material with Lame constantsλ, µT and densityρ. We call the
waves with velocitiesc1 andc2 as quasi-P and quasi-S waves respectively. We next discuss
the reflection of these waves at the free boundaryy = 0.

4. Quasi-P waves incident at the free boundary

If quasi-P waves are incident at the boundaryy = 0 of the fibre-reinforced anisotropic semi-
infinite medium, we get quasi-P and quasi-SV waves as reflected waves. We may, therefore,
assume the total displacement to be of the form

u = U0 exp(iR1) + U1 exp(iS1) + U2 exp(iS2), (14)

v = V0 exp(iR1) + V1 exp(iS1) + V2 exp(iS2), (15)

where

R1 = (ω/c1)[c1t − (x sine − y cose)],

S1 = (ω/c1)[c1t − (x sine + y cose)],

S2 = (ω/c2)[c2t − (x sinf + y cosf )], (16)

are the phase factors associated with the incident quasi-P , reflected quasi-P and reflected
quasi-SV waves,e being the angle which incident and reflected quasi-P waves make
with y-axis andf is the angle which the reflected quasi-SV waves make with they-axis.
U0, V0; U1, V1; andU2, V2 are the amplitude factors associated with the incident quasi-P ,
reflected quasi-P and reflected quasi-SV waves respectively. Since the incident and reflected
waves in (14) and (15) must satisfy the equations of motion (5) and (6), we have, as in (9),

−[D1(e) − ρc2
1(e)]U0 + B2 sine coseV0 = 0,

−[D1(e) − ρc2
1(e)]U1 − B2 sine coseV1 = 0,

−[D1(f ) − ρc2
2(f )]U2 − B2 sinf cosf V2 = 0. (17)

It may be noted that we can obtain another set of similar equations corresponding to (10).
But this set will give the same results as the set in (17) due to consistency condition (12).
Equations (17) may be written as

U0 = η1V0, U1 = −η1V1, U2 = −η2V2, (18)

where

η1 = B2 sine cose/[D1(e) − ρc2
1(e)],

η2 = B2 sinf cosf/[D1(f ) − ρc2
2(f )]. (19)
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The total displacement field in (14) and (15) must satisfy the boundary conditions,

σ21 = σ22 = 0, at y = 0. (20)

Making use of (2), (14) and (15) in the above boundary conditions, we obtain

[(cose/c1)U0 + (− sine/c1)V0] exp[iS1(x, 0)]

+ [(− cose/c1)U1 + (− sine/c1)V1] exp[iS1(x, 0)]

+ [(− cosf/c2)U2 + +(− sinf/c2)V2] exp[iS2(x, 0)], (21)

[(λ + α)(− sine/c1)U0 + (λ + 2µT )(cose/c1)V0] exp[iS1(x, 0)]

+ [(λ + α)(− sine/c1)U1 + (λ + 2µT )(− cose/c1)V1] exp[iS1(x, 0)]

+ [(λ + α)(− sinf/c2)U2 + (λ + 2µT )(− cosf/c2)V2] exp[iS2(x, 0)],
(22)

where

c1 = c1(e), c2 = c2(f ), (23)

and where we have used the result

R1(x, 0) = S1(x, 0). (24)

Since (21) and (22) must be satisfied for all values ofx, we have

S1(x, 0) = S2(x, 0), (25)

which, on using (16), gives

sine/c1(e) = sinf/c2(f ). (26)

This is the form of Snell’s law for the fibre-reinforced anisotropic medium. Equations (21)
and (22), with the help of (18) and (25), may be written as

m1V0 + m1V1 + m2V2 = 0, (27)

n1V0 − n1V1 + n2V2 = 0, (28)

where

m1 = (η1 cose − sine)/c1,

m2 = (η2 cosf − sinf )/c2,

n1 = [(λ + α)η1 sine − (λ + 2µT ) cose]/c1,

n2 = −[(λ + α)η2 sinf − (λ + 2µT ) cosf ]/c2. (29)

The amplitude ratios for the reflected waves are obtained from (18), (27) and (28) as

U1/U0 = (m1n2 − m2n1)/1, U2/U0 = 2η2m1n1/η11, (30)

V1/V0 = (m2n1 − m1n2)/1, V2/V0 = −2m1n1/1, (31)
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where

D = m1n2 + m2n1. (32)

Equation (30) gives the amplitude ratios for the horizontal component of the displacement.
Similarly, (31) gives the amplitude ratios for the vertical component. From (30) and (31),
we obtain the following expressions for the amplitude ratios for the total displacement for
reflected qP and qSV waves when qP waves are incident at the free boundary

ZPP
1 = |(m2n1 − m1n2)/1|, (33)

ZPS
2 = ‖2m1n1/1‖[(η2

2 + 1)/(η2
1 + 1)]1/2. (34)

5. Quasi-SV waves incident at the free boundary

We assume that the incident and reflected quasi-SV waves make an anglef with they-axis
and the reflected quasi-P waves make an anglee with this axis. Amplitude ratios in this case
may be obtained as in the previous section. We find

U1/U0 = 2η1m2n2/η21, U2/U0 = (m2n1 − m1n2)/1, (35)

V1/V0 = −2m2n2/1, V2/V0 = (m1n2 − m2n1)/1, (36)

whereU0, V0 are the amplitude factors of the incident quasi-SV waves.
From (35) and (36), we obtain the amplitude ratios for the total displacement for reflected

qP and qSV waves as

ZSP
1 = ‖2m2n2/1‖[(η2

1 + 1)/(η2
2 + 1)]1/2, (37)

ZSS
2 = |(m1n2 − m2n1)/1|. (38)

6. Numerical results and discussion

To study the effect of reinforcement on wave propagation, we use the following numerical
values for the physical constants

λ = 7·59× 1011 dyne/cm2, µT = 1·89× 1011 dyne/cm2,

µL = 2·45× 1011 dyne/cm2, α = −1·28× 1011 dyne/cm2,

β = 0·32× 1011 dyne/cm2, ρ = 7·8 gm/cm3.

Making use of Snell’s law given by (26), the angles of reflection for qP and qSV waves are
computed for various values of the angle of incidence of qSV and qP waves respectively.
Figure 2 gives the angle of reflection of qSV waves for various values of the angle of incidence
of qP waves with and without reinforcement. For the present choice of the physical constants,
the angle of reflection for qSV waves in the presence of reinforcement increases more rapidly
than in the absence of reinforcement. Figure 3 gives the angle of reflection of qP waves for
various values of the angle of incidence of qSV waves with and without reinforcement.

The amplitude ratios for reflected qP and qSV waves are computed for incident qP and
qSV waves. The variations of these amplitude ratios with the angle of incidence are shown
graphically in figures 4 and 5 for incident qP and qSV waves, respectively. The dotted lines
with and without crosses represent the variations of the amplitude ratios for reflected waves in
the absence of reinforcement. The solid lines with and without crosses represent the amplitude
ratios with reinforcement.
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Figure 2. Variation of the angle
of reflection of qSV waves with the
angle of incidence of qP waves.

6.1 Incident quasi-P wave

The variations of the amplitude ratios for reflected qP and qSV waves with the angle of
incidence of qP waves are shown in figure 4 by solid lines with crosses and solid lines,
respectively. The amplitude ratio for reflected qP is one ate = 0◦ ande = 90◦ and attains

Figure 3. Variation of the angle
of reflection of qP waves with the
angle of incidence of qSV waves.
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Figure 4. Variation of the ampli-
tude ratios for reflected waves
with the angle of incidence of qP
waves.

its minimum ate = 65◦. Also, the amplitude ratio for reflected qSV has its value zero at
e = 0◦ ande = 90◦ and attains its maximum ate = 48◦. A comparison between solid and
dotted lines reveals that the effect of reinforcement on amplitude ratios of reflected qP and
qSV waves is significant.

Figure 5. Variation of the ampli-
tude ratios for reflected waves
with the angle of incidence of
qSV waves.
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6.2 Incident quasi-SV wave

The variations of the amplitude ratios for reflected qP and qSV waves with the angle of
incidence of qSV wave are shown in figure 5 by solid lines with crosses and solid lines
respectively. The amplitude ratio for reflected qP is zero atf = 0◦ and it attains its maximum
nearf = 28◦. Beyondf = 28◦, it is zero for all angles of incidence. Thus the critical angle
for reflected qP waves is 28◦. Also, the amplitude ratio for reflected qSV wave is one at
f = 0◦ and decreases to its minimum atf = 25◦. For the range 25◦ ≤ f ≤ 28◦, it increases.
Beyondf = 28◦, it is one for all angles of incidence. The effect of reinforcement as defined
by the physical constants chosen is to increase the critical angle from about 24◦ to about 28◦.

7. Conclusions

Equations (33), (34), (37) and (38) give the amplitude ratios of the reflected waves when
qP and qSV waves are incident at the free surface of a fibre-reinforced, homogeneous,
anisotropic, elastic half-space. It is assumed that the plane of incidence contains the rein-
forcement direction. We have verified that, on putting the reinforcement parametersα, β

and(µL − µT ) zero each, the amplitude ratios obtained in the present study coincide with
the amplitude ratios for an isotropic half-space as given by Ben-Menahem & Singh (1981,
pp 93–95). We have found that the reinforcement has a significant effect on the amplitude
ratios. Further, the reinforcement alters the critical angle considerably.

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi for
financial support to SJS.
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