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Plane waves in a thermally conducting viscous liquid
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Abstract. The aim of this paper is to investigate plane waves in a thermally
conducting viscous liquid half-space with thermal relaxation times. There exist
three basic waves, namely; thermal wave, longitudinal wave and transverse wave in
a thermally conducting viscous liquid half-space. Reflection of plane waves from
the free surface of a thermally conducting viscous liquid half-space is studied.
The results are obtained in terms of amplitude ratios and are compared with those
without viscosity and thermal disturbances.
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1. Introduction

The study of stress waves is of central interest to the engineers, geophysicists and seismol-
ogists due to its varied applications. The extensive literature on the subject is reviewed in
the books of Ewinget al (1957), Bullen (1963), Bath (1968), Miklowitz (1966), Achen-
bach (1973), Kalski (1963) and by many other authors. The problems of wave and vibration
become more interesting in the field of seismology, when we study the problems with the
additional parameters (e.g. viscosity, thermal disturbance, porosity, microrotation, anisotropy,
etc.).

Chadwick & Sneddon (1958) and Lockett (1958) studied the propagation of thermoe-
lastic plane waves. Knot (1899) derived the general equations for reflection and refraction
at plane boundary. In classical dynamical-coupled theory of thermoelasticity, thermal and
mechanical waves propagate with an infinite velocity, which is not physically admis-
sible. To overcome this contradiction, the coupled theory of thermoelasticity has been
extended by including the thermal relaxation time in constitutive relations by Lord &
Shulman (1967) and Green & Lindsay (1972). Some problems on reflection in thermoe-
lastic solid have been discussed by Deresiewicz (1960), Sinha & Sinha (1974) and Singh
(2000).

The present paper deals with the plane wave propagation in a thermally conducting viscous
liquid half-space with thermal relaxation times. The reflection of the plane waves from the
free surface of a thermally conducting viscous liquid half-space is discussed.
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Figure 1. The geometry of the problem showing incident and reflected waves.

2. Formulation of the problem

We introduce rectangular Cartesian co-ordinates (x, y, z) and place the origin at the free
surface of a thermally conducting viscous liquid half-space as shown in figure 1. The positive
z-axis is taken into the half-space. Heat sources, external force loading and body forces are
assumed to be absent. The constitutive equation and the equation of motion for a thermally
conducting viscous liquid are (Lord & Shulman 1967; Green & Lindsay 1972)
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∇ × (∇ × u)− β∇(T + τ1Ṫ ) = ρü, (2)

ρC∗(Ṫ + τoT̈ )+ βTo[u̇i,i +1τoüi,i ] = κ∇2T , (3)

whereK is bulk modulus,ρ is fluid density,η is fluid viscosity,T is temperature variable,To
is absolute temperature,β(= 3Kαt) is thermal constant,αt is coefficient of linear expansion,
u is displacement vector,tij andeij are stress and strain tensors,δij is Kronecker delta,τ0

andτ1 are relaxation times,κ is coefficient of thermal conductivity,C∗ is specific heat at
constant strain and the symbol1 in (3) makes these fundamental equations possible for the
two different theories of the generalized thermoelasticity.

For the LS (Lord–Shulman) theoryτ1 = 0,1 = 1 and for GL (Green–Lindsay) theory
τ1 > 0 and1 = 0. The thermal relaxation timesτo andτ1 satisfy the inequalityτ1 ≥ τo ≥ 0
for the GL theory only.

3. Solution of the problem

To solve the basic equations, we decompose the displacement vector as

u = ∇φ + ∇ × ψ, ∇.ψ = 0, (4)

Using (4), (2) reduces to

v2
1∇2φ = φ̈ + β(T + τ1Ṫ ), (5)

v2
2∇2ψ = ψ̈, (6)
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From (5), it is clear that the longitudinal wave is affected due to the thermal disturbances.
From equation (5), we have
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where
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We assume the solution of (10) in the form

φ = f (z) exp [ik(ct − x)], (c > v1) (12)

wherek is the wave number.
With the help of (12), (10) reduces to
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where
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and phase velocityc is equal tov/ sinI , wherev is the velocity of incident wave andI denotes
the angle of incidence.

The solution of (13) is of the form

f (z) = A1 exp(ikm1z)+ A2 exp(−ikm1z)+ A3 exp(ikm2z)

+ A4 exp(−ikm2z), (16)
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where

m2
1 = [{(A2 − 4B)1/2 + A}/2k2], (17)

m2
2 = [{−(A2 − 4B)1/2 + A}/2k2], (18)

correspond to the longitudinal wave and thermal wave respectively andA1, A2, A3, A4 are
arbitrary constants.

Equation (6) can be written as

v2
2∇2ψ = ψ̈, (19)

where

ψ = (−−→
ψ )y.

We assume the solution of (19) in the form

ψ = g(z) exp [ik(ct − x)], (c > v2). (20)

From (19) and (20), the solutionψ can be written as

ψ = [A5 exp(ikm3z)+ A6 exp(−ikm3z)] exp [ik(ct − x)], (21)

where

m2
3 = (c2/v2

2 − 1), (22)

corresponds to transverse wave and A5, A6 are arbitrary constants.
The displacement components of vectoru in x-z plane are

u1 = ∂φ

∂x
+ ∂ψ

∂z
, u3 = ∂φ

∂z
− ∂ψ

∂x
, (23)

4. Reflection

We consider the propagation of plane waves in thex-z plane which makes an angleI with
the normal to the boundary. For an incident longitudinal wave,c = m1 cosecI and for an
incident transverse wave,c = m3 cosecI . For incident longitudinal wave or transverse wave,
we get three reflected waves in thermally conducting viscous liquid. The complete geometry
showing these reflected has been given in figure 1.

The appropriate potentials are

φ = Bo exp{ik(ct − x +m1z)} + B1 exp{ik(ct − x −m1z)}
+ B2 exp{ik(ct − x −m2z)}, (24)

T = (1/γ o)[a1Bo exp{ik(ct − x +m1z)} + a1B1 exp{ik(ct − x −m1z)}
+ a2B2 exp{ik(ct − x −m2z)}], (25)

ψ = Bo exp{ik(ct − x +m3z)} + B3 exp{ik(ct − x −m3z)}, (26)
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whereBi(i = 0, 1, 2, 3) are arbitrary constants, and

a1,2 = k2{(c2 − v2
1)+m2

1,2v
2
1}, (27)

γ o = β(1 + iωτ1), (28)

Boundary conditions:For two-dimensional motion inx-z plane, the appropriate boundary
conditions at free surfacez = 0, are as

tzz = 0, tzx = 0, ∂T /∂z = 0, (29)

Making use of the potentials given by equations (24) to (26) in boundary conditions (29), after
using the equations (1) and (23), we get a system of three non-homogeneous equations as

3∑
j=1

CijZj = dj , (i = 1, 2, 3) (30)

where

C11 = −(K + 4ηiω/3)m2
1 − (K − 2ηiω/3)− ρa1/k

2,

C12 = −(K + 4ηiω/3)m2
2 − (K − 2ηiω/3)− ρa2/k

2, C13 = 2ηiωm3,

C21 = −2m1, C22 = −2m2, C23 = (1 −m2
3)

C31 = m1a1, C32 = m2a2, C33 = 0,

and
For incident longitudinal wave

d1 = −C11, d2 = C21, d3 = C31, (31)

For incident transverse wave

d1 = C13, d2 = −C23, d3 = C33, (32)

and(Zj ) are the amplitude ratios for various reflected waves.

5. Numerical analysis

To explain the analytical procedure presented earlier, we now consider a numerical example.
The results depict the variation of the angle of incidence with the modulus of the amplitude
ratios.

The physical constants are (Fehler 1982)

ρ = 1.01 gm/cm3, K = 0.0119× 1011 dyne/cm2, η = 0.0014 gm/cm s,

K∗ = 0.48 cal/cm s◦C, C∗ = 0.206 cal/gm◦C, To = 20◦C,

ω = 5s−1, ε = 0.053,

Nayfeh & Nasser (1971) tookτo = 3K∗/ρC∗α2. The relaxation timeτ1 is considered to be
of same order as that ofτo. The system of equations (30) is solved for amplitude ratios by
using a computer program of the Gauss elimination method. The amplitude ratios for reflected
longitudinal wave, reflected thermal wave and reflected transverse wave are computed for
angle of incidence varying from 0◦ to 90◦.
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Figure 2. Variations of the amplitude ratios for incident longitudinal wave.

5.1 Incident longitudinal wave

The amplitude ratios for reflected longitudinal wave for Lord and Shulman (LS) case (Lord
& Shulman 1967) and Green and Lindsay (GL) case (Green & Lindsay 1972) are shown by
solid curvesS∗ andS in figure 2(a). These curves reduce to dashed curvesD∗ andD, if we
putη = 0. If we neglect thermal effects, the curvesD∗ andD reduce to curveD1.

The amplitude ratios for reflected thermal wave first increase to their maximum values and
then decrease sharply. The variations for LS and GL cases are shown by curvesS∗ andS
in figure 2(b). These curves reduce to curvesD∗ andD, if we neglect viscous effect. This
reflected wave would disappear, if we neglect thermal effect also.

The amplitude ratios for reflected transverse wave are shown by curveD2 in figure 2(c).
It increases to its maximum value and then oscillates. This reflected wave disappears, if we
neglect viscous effect.

5.2 Incident transverse wave

The variations of the amplitude ratios for reflected longitudinal, thermal and transverse waves
are shown in figure 3. The amplitude ratios for reflected transverse wave first decrease to its
minimum value and then oscillate. The variations of amplitude ratios for reflected longitudinal
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Reflected longitudinal wave

Reflected thermal wave

Reflected transverse wave

Figure 3. Variations of the amplitude ratios for incident transverse wave.

wave and reflected thermal wave are similar. They first increase to their respective maxima
and then oscillate. The variation of the amplitude ratios for reflected longitudinal wave is
shown after multiplying its original value by 10.

From § 5.1, we conclude that the reflected longitudinal and thermal waves are affected by
second thermal relaxation in time and viscosity of the liquid. The reflected transverse wave
will not exist if we put viscosity of liquid equal to zero. The analysis shown in this section is
not possible in a non-viscous liquid.
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