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The plane wave propagation in a homogeneous transversely isotropic thermally conducting elastic solid is studied
with two thermal relaxation times. Three types of plane waves, quasi-P, quasi-S and thermal waves, are shown
to exist. The analytical expressions for their velocities of propagation are obtained. The velocities of these waves
are found to depend on the angle of propagation and- frequency. This dependence of velocities on the direction
of propagation and frequency is shown graphically. Effects of thermal parameters and anisotropy upon these
velocities are observed.
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1. INTRODUCTION

The dynamical theory of thermoelasticity is the study of dynamical interaction between thermal and
mechanical fields in solid bodies and is of much importance in various engineering fields such as
earthquake engineering, soil dynamics, aeronautics, astronautlcs nuclear reactors, high energy particle
accelerators, etc. The theories on generalized thermoelasuclty 2 have become the center of recent
research due to their applications in many modern technological problems. Various problems on wave
propagation in an isotropic generallzed thermoelastic sohd are studied by some researchers Notable
among them are Norwood and Warren®, Sinha and Sinha®, Singh and Kumar® and Smgh

There are reasonable grounds for assuming anisotropy in the continents. Amsotropy in the
earth crust’s and upper mantle affects the wave characteristics considerably. Banerjee and Pao
investigated the propagation of plane harmonic thermoelastic waves in mfm1te1y extended anisotropic
medium after taking into account the thermal relaxation. Dhaliwal and Sherief’ derived the govemmF
eguatlons of generalized thermoelasticity for anisotropic media. Singh and Sharma'® and Sharma'

, investigated generalized thermoelastic waves in transversely isotropic media after taking into
account one relaxation time and obtained a cubic equation which gives the non-dimensional velocities
of various plane waves.

The present research work is an attempt to study the propagation of plane waves in
transversely isotropic generalized thermoelastic solid with two thermal relaxations. The analytical
expressmns for velocities of these plane waves are derived by an approach used by Sidhu and
Smgh The computational work is performed to obtain the numerical values of the velocities of
the plane waves for a particular material as model for the generalized anisotropic thermoelastic solid.
The graphical presentation of velocities of the plane waves thh the direction of propagation are
exhibited for two different theories of generalized thermoelastlclty

2. FORMULATION OF THE PROBLEM

Consider a homogeneous transversely isotropic thermally conducting elastic medium at uniform
temperature T;,. The medium is assumed transversely isotropic in such a way that the planes of

isotropy are perpendicular to z-axis. The origin is taken on the thermally insulated and stress free
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plane surface and z-axis normally into the half-space which is represented by z20. For two
dimensional motion in x-z plane, the govemin; fzield equations of generalized thermoelasticity in
absence of body forces and heat sources are! % 1

) u’m*i-c‘mu,zz+(cl3+c44)w’xz—ﬂl (T+1 T);xzpi[ o (D
CuuW o tepw tlepytou ,— BT+ T)'Z=p\fv' .. (2)
K, T,H+K3T,a—pce(7‘+ro7")

= T, (B, (l:l’x-i' TOQI:l‘,x)+ﬁ3 W+ rO.Q»'v',Z)] .. (3)

where By =(c;;+cpp) oy + c13 04, ﬁ3 =23 0 +Cq3 0; )]
¢, are the isothermal elasticities, p and C, are respectively the density and specific heat at constant
strain; Ty, 7, are thermal relaxation times; K3, K, and o, @) are thermal conductivities and the

coefficients of linear thermal expansion along and perpendicular to the axis of symmetry respectively.
The coma notation is used for spatial derivatives and dot notation for time differentiation. The use
of symbol €2 in eq. (3) makes these fundamental equations possible for the two different theories
of the generalized thermoelasticity. For the L-S (Lord-Shulman) theory 7,=0,2=1 and for G-L

(Green-Lindsay) theory 7, >0 and £2=0. The thermal relaxations 7, and 7, satify the inequality

7,2 7,20 for the G-L theory only.

3. PROPAGATION OF PLANE WAVES

For plane waves of circular frequency @, wave number k, and phase velocity c, incident at the free
boundary z = O at an angle 6 with the z-axis, we may assume ‘

u = A exp (i P)), w=Bexp (iP)), T=Cexp(iP)), .. (5
where A, B, C are the amplitude factors and
P, =wt-k(xsin 8-zcos 6), ... (6)

is the phase factor.

For waves reflected at 7 = 0, we assume

u = A exp (i Py, w=Bexp (iP,), T=Cexp (iP,), o (D

where P,=wt~k(xsin 8+zcos 6), .. (8

is the phase factor associated with reflected waves. Making use of eq. (5) or (7), in egs. (1) to (4),
we obtain

= (Dy - pcP) At (c)3+cyy) sin Ocos 6B +(i/k) 7 B, sin §C=0, . 9

* (¢y3+ Cqq) sin Bcos OA ~ (Dy— pc?) BF (i/k) 7 By cos C =0, . (10)
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tTyc® By sin 04+ TT,c? By cos 6B~ (i/k) (D, - pc* 7 C,) C=0, . (11)

where the upper sign corresponds to the incident waves [eq. (5)] and the lower sign corresponds to
the reflected waves (eq. (7). D,,D,, D, are given by

D, (6)=cy, sin’ 0+cy, cos? 6,
D, () =cyy sin 8+ Can sin® 6,
D, (8) = K, cos® 6+ K, sin” 6, - (12)

and T =Ty~ (i/ke), T=1yQ~(i/ke), T=(1+ikecT).

Egs. (9) to (11) in A, B, C can have a nontrivial solution only if the determinant of their
coefficients vanishes, i.e.,

Ay G +A G +Ay A =0, . (13)
where

Ay=1,

Aj=—(D, 7 +D, 7 +D,+ B¢ fvf Tcos’ 6+ €, 7 v? Tsin” 6),

A,=D, D, T*+D1 D,+D,D,+D, Bz g T’v? Tcos? 0+D, e 7 vf Tsin® 6

-7 (o +c44)2 sin® @ cos® 82 (c3tcyy) Bre T v% sin’ @ cos? 6,

Ay==D; D, D, (c 3 +c4y)* sin® Bcos” 6. . (14)

2 2
and {=pct D,=Dy/C, &=BTypC,v,, vi=c,,/p. B=By/Pb,

Using Cardan’s method to solve eq. (13), we obtain

E+3HE+G=0, .. (15)
where E=7 (+(Ay/3), H=(37 Ay—AD/9,
G=Q1724,-97 A A +24)/27. - (16)

The three roots of eq. (15) can be written as

2
Ey=h +hy Ey=h g+hyg’ Ey=h g +hyg. - (7

172 173
} !

where B=l-G+{G+aB) 12, B=-G-{G*+a?| V2,
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g=(—1xv¥-3)/2, a cube root of unity.
Therefore, the three roots of eq. (13) are
§ =8, -AIVT, §=1&-A)/3NVT, §=[&-A/H/T. .. (18)

which give expressions for the velocities of propagation of quasi-P, thermal and quasi-S waves
respectively. It may be noted that whether we take the upper sign or the lower sign in egs. (9) to
(11), we get the same three values of { given by eq. (13). Thus, in general, in two dimensional
transversely isotropic generalized thermoelastic media with two relaxation times, there are three types
of plane waves, whose phase velocities vary with the direction of propagation and frequency (w).

Particular case — For isotropic elastic solid, we take
€y =c33=/l+2#, Cyp=H, c]3=l,
B =B;=B—0, K, =K;=K—0, 1,=1,=0,
then D,—0, & —0, A;—>0,
which reduce theeq. (13) to a quadratic equation in { as

Cz+31 {+B,=0, e (19)
where B =- (Dll + sz)’

B,= D'l D:z - (/1+,u)2 sin” @ cos’ 6,

D) = (A+2 p) sin’ 6+ i cos’ 6,

D)= (A +2 p) cos” 0+ ysin” 6,

The solution of eq. (19) gives the expressions for velocities of propagation of P and SV
waves in two-dimensional model for isotropic elastic media.

It may be noted that if we put ¢;;=c33=A+2 1, cyu=H, cj3=A4, and neglect the thermal

parameters in cubic eq. (13) given by Sharma'? , 1t reduces to

(=i ({-A) =2y =0, . (20)
which gives three values of { as i@ 1 and w/(A+2 ), ie., the velocities of propagation for P
172

and SV waves as 1 and [W/(A+2u)] “, which are non-dimensional quantities.

Moreover, if we take 7;=0,£ = 1, eq. (13) of the present problem will provide the

10 11,12

dimensional velocities of plane waves in model considered by Singh and Sharma™~ and Sharma

4. NUMERICAL RESULTS AND DISCUSSION

To study in greater detail the dependence of velocities of propagation of plane waves on their
direction of propagation, we consider single crystal of zinc as an anisotropic generalized thermoelastic
solid for which the basic data are
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cy; = 1.628 x 10t! Nm_z, €33 = 1.562 x 10! Nm_z,
¢;3=0.508 x 10" Nm™2, ¢,, =0.385 x 10' Nm™ 2,

B =575x 108 Nm™ 2 deg™ !, B =5.17x 105 Nm™ 2 deg™ ",

— 2 - — ]
p=714x10°kgm >, C,=39x 10> J kg™ ' deg™ ",

K, =124x 10 W™ ' deg™ !, K;=124x 10> W™ ' deg™ !,
= 0 — : — —
T,=296°K, € =.053 1,=005 7,=0.1.

The variations of the velocities of quasi-P, thermal and quasi-S waves with the angle of
propagation (8) are shown in Fig. 1 for L-S and G-L theories when @ = 2. The velocities of
propagation of these plane waves are also compared with those for isotropic elastic case. The

numerical values of the velocitks of propagation of quasi-P, thermal and quasi-S waves are calculated

for the frequency range 0 < @< 30 when direction of propagation makes 45° with vertical axis. The

wrrewx quasi—P §L—S
wewvs9 quasi—P (G-L
>+ P (|sotropic)

asawaa Thermal éL—S

*»x+xx Thermal (G—-L
---- quasi—=S (L-S
- - - quasi—=S (G-L
- — — SV (Isotropic)
0.25 —
0.20
Qg
0.15 —
é.
2
.G — - S il
‘3.03 0.10 4&'——5—-a—~a—-—.2_‘_'g:‘_&___z:—s-z___z_____a:__,s
> T
'/ =
0.05 S - - - - —_ - - - - - e
0.00 | ! ! T A
0 18 36 54 72 90

Angie of propagation

FIG. 1. Velocity as a function of angle between direction of propagation and vertical axis
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variations of these velocities with frequency are shown in Fig. 2. From Figures 1 and 2, we observe

the following :
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FIG. 2. Velocity as a function of angular frequency

1. The velocities of propagation of plane waves depend on angle of propagation. For quasi-P
waves, its velocity first decreases and then increases as angle of propagation varies from 0° to 90°.
The velocity for quasi-S wave first increases and then decreases with the increase in angle of
propagation. The velocity for thermal wave at each angle of propagation is observed uniform though
varies slightly.

2. The comparison of the numerical values of velocities of plane waves for L-S and G-L
cases reveals the effect of second thermal relaxation time on the velocity of each wave. The effect
of second thermal relaxation time is observed minimum on the velocity of quasi-S wave.

3. The effects of thermal parameters and anisotropy are observed on velocities when
compared with isotropic case.

4. For the frequency range 0< w<20, the velocities of plane waves change arbitrarily.
Beyond w> 20, the velocity for quasi-P wave increases slightly, whereas the velocities for thermal
and quasi-S waves remain almost constant.

It is concluded that anisotropy in generalized thermoelastic media has significant effect on
the velocities of propagation of plane waves. This research work is supposed to be useful in further
studies, both theoretical and observational, of wave propagation in the more realistic models of the
thermoelastic solids present in the earth’s interior.
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