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The present investigation is concemned with the reflection and refraction of micropolar thermoelastic waves at an
interface between a liquid half-space and a micropolar generalized thermoelastic solid half-space. The numerical
results are calculated in terms of amplitude ratios for water/aluminium-epoxy composite model for L-S (Lord and
Shulman) and G-L (Green and Lindsay) theories. The comparison between these theories reveals the effect of
second thermal relaxation time taken by Green and Lindsay. The results are also compared with those without
thermal effect.
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INTRODUCTION

Jeferrey’ s' and Gutenberg con51dered the reflection of elastic plane waves at a solid half-space.
Chadwick and Sneddon® and Lockett* studied the propagation of thermoelastic plane waves. Knot
derived the general equations for reflection and refraction at plane boundary.

In classical dynamical coupled theory of thermoelasticity, the thermal and mechanical waves
propagate with an infinite velocity, which is not physically admissible. To overcome this
contradiction, the coupled theory of thermoelasticity has been extended by including the thermal
relaxation time in constitutive relations by Lord and Shulman® and Green and Lmdsay7 Some
problems on relfection in thermoelastic solid have been discussed by Deresiewicz®, Sinha and Sinha’
and Sharma'®

A theory of micropolar continua was proposed by Eringen and Suhubi'! and Eringen12 to
explain the continuum behaviour of materials possessing microstructure. The propagation of plane
waves in an infinite micropolar elastic solid has been discussed by Parfitt and Ermgenl Ariman'
and Smith!”. Parfitt and Eringen 13 have shown that four basic waves (a longitudinal displacement
wave, two sets of coupled waves and a longitudinal microrotational wave) propagate in an infinite
micropolar elastic solid.

The linear theory of micropolar thermoelasticity was developed By extending the theory of
micropolar continua to include thermal effect by Ermgen16 and Nowacki!” and is known as
micropolar coupled thermoelasticity. Dost and Tabarrok 18 have presented the generalized micropolar
thermoelasticity by using Green - Lindsay theory. Kumar and Slngh have also presented the
generalized micropolar thermoelasticity with stretch by using Lord-Shulman and green-Lindsay
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theories. Wave propagation m a micropolar generallzed thermoelastic body with stretch has been
studied by Kumar and Smgh Singh and Kumar®® 2! have discussed a some problems on reflection
of plane waves from flat boundary of a micropolar generalized thermoelastic half-space. Singh and
Kumar? have also proposed a generalized thermo microstretch elastic solid and have discussed the
reflection of plane waves from the free surface of a generalized thermo-microstretch elastic solid.

In the present paper, a problem of reflection and refraction of micropolar thermoelastic waves
have been studied at an interface between a thermally conducting liquid and a micrepolar generalized
thermoelastic solid half-spaces.

FORMULATION OF THE PROBLEM

We consider a homogeneous micropolar generalized thermoelastic solid and thermally conducting
liquid which occupy lower and upper half-spaces respectively. We assume that heat sources, external
force loading and body forces are absent and consider a fixed rectangular cartesian coordinate system
(x, y, z). We consider that the two semi-infinite media are in contact at a plane interface (z = 0)
and suppose that the plane longitudinal displacement wave impinges on the interface from below
which we take as first medium, the positive z-axis lying inside the solid half-space. We take the
plane wave motion in the xz-plane (i.e. d/dy=0). The complete geometry of the problem has been
shown in Fig. 1. Following Eringen ~, Lord and Shulman® and Green and Lindsay’, the constitutive
and field equations of micropolar generalized thermoelastic solid without body forces and body
couples are

Oy=Au, S+ Uy +u )+ Ky ~&,8)-v(B+1 8) 5, . (D)

My =09, Oy +Bo 1 +79 )
2 2 2 2 2 _ ..

(c;+e3) V(V-u)—(cy+¢3) VX(VXu)+c; VX ¢-vV(6+1 O)=u . (3
2 2 2 2. .

(4 tc) V(V-9)—c, VX(VX )+ ayVXu-2w,9=9, . @)

pC*(6+t09)+v60[1}i,i+At0i¢'i,l.]=K' V6, . (5)
2 2 2

where ¢ =(A+2u)/p, c,=Wp, c;=K/p,

2 ., 2 .22, .
c,=Ypj cs=(a+P/pj, ay=c3/j=x/pj,
v=CBA+2u+K)a, v=v/p .. (6)

. . . . . ¥
where symbols A, i, k, o, B, ¥ are material constants, p the density, j the rotational inertia, K the
coefficient of thermal conductivity, ¢, the coefficient of linear expansion. u and ¢ are displacement

vector and microrotation vector respectively. Superposed dots stand for derivatives with respect to
time. &, is the kronecker delta.

For the L-S (Lord-Shulman) theory #;=0,4=1 and for G-L (Green-Lindsay) theory #, >0
and A=0. The thermal relaxations ¢, and ¢, satisfy the inequality ¢ 2¢,20 for the G-L theory only.



REFLECTION AND REFRACTION OF MICROPLAR THERMOELASTIC WAVE 1231

. We deﬁne the angle of incidence (I) as the angle between the propagation of plane
longitudinal displacement wave and normal to the boundary of the micropolar generalized
thermoelastic medium.

SOLUTION OF THE PROBLEM

To solve the problem in micropolar generalized thermoelastic medium, we decompose the displace-
ment and microrotation vectors as

u=Vo+V, U V.-U=0, )
$=VE+ V@ V. D=0, G

Using egs. (7) and (8), egs. (3) to (5) reduce as

(C+c5) P o= +V(0+1, B), -9
(G +e) U+ VxD=U, .. (10)
EVO-20 B+ay VXU=F .. (11)
(CG+c) VPE-2apE=¥ . (12)

From egs. (9) to (12), we see that the longitudinal displacement wave (LD wave) is affected
due to the thermal wave, the coupled transverse and microrotational waves (CD I and CD II waves)
and longitudinal microrotational wave (LM wave) remain unaffected.

From eq. (9), we have

6= (V| V¢~ )% e (13)

where V=l el F=VI1+1, (/D). . (14)

Eliminating 6 from eqs. (5) and (13), we get
c* Jd d d
V4¢_{?{(1+t0_3_t]+8(1+t1$](1+At°EJ}
e 1)
+ V2¢ +=3| 1+ (é‘3 ¢/c9t) 0, .. (15)
Vfat at KV dt

where K K'/p, =V OO/Vf c'. .. (16)
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We assume the solution of eq. (15) in the form
=1 (2) exp [ik (ct- )], (> V)

With the help of eq. (17), eq. (15) reduces to

1@, L1
A Bf(2)=0,
it g e
2
where A=k %-2 —ke (C*/K") (i =ty ke) + £ (i = 2, ko) (1 + ike 1, A)],
1

B=k* 1-% +ck> (C*/K") [ -t ke) + € (i — 1, ke) (1 +i ke 1 A)
: .

2
c
- (i —1g ke)
Vi

The solution of eq. (18) is of the form

f(@)=A exp(m;z)+A,exp(-~m;2)+Ajexp(m,z)+A,exp(-m,2),

where m, = [{(A*-4B)"2 - Ay,

. (17

. (18)

. (19)

. (20)

.21

. (22)

m, = [- {(A*-4B)""% + 4,121

correspond to the thermal and modified LD waves respectively and A, A,, A;, A, are arbitrary

constants.

Making use of eq. (8) in eq. (10), we get

Py [
1
628 G |
Cs ar C3
oD, I,
Where V’z(— U)y’ ¢2=(—¢)y=_§z-_ ax'

Using eq. (24) in eq. (11) and then the final solution is in the form
w=[Agexp (m; z) + Ag exp (- m3 2) + A, exp (my 2)
+ Agexp (—my, z] [exp i ax - kx)],
where my = {(172) [(C* -4D)"* - c1}?

and my = {(--1/2) [(C*-4D)'*+c)'?,

. (24)

.. (25)

.. (26)

. 27
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correspond to coupled transverse microrotational waves and coupled transverse displacement waves
(CDI- and CDII-waves) and

of & “% C§
C=k|—5——+5-2 [+—| 55-2 |, - (28)
( 2 2 4 o 2 2
4 c C c 0 3 2c
D=i\1-5—-S+5 57 |-¥7| T 3+7 2-2 | - (29)
Cyte3 ¢f cyulcy+ey) Cq| CQ+C3 €yt

and A5, A6, A7,A8 are arbitrary constants.

If we assume u=x=a==y=0, we see that the longitudinal wave in a thermally
conducting liquid medium is affected due to the presence of a thermal wave. In this case, there is
no existence for other waves. We consider the variables with dashes in the liquid medium.

The appropriate potentials for two media will now be {dropping the exponential term ik(ct

- 0}
¢ = Byexp (m,2) + By exp (—m, z) + Byexp (-m, 2), ... (30)
6= (1/%,) [b, Byexp (my2) + b B; exp (-m, z) + b, B, exp (-m, 2)] .. 31
W= B exp (- my z) + By exp (- my 2), .. (32)
¢, = by By exp (- m3 2) + by By exp (- m, 2), .. 33)
¢’ =Bgexp (m,’ z) + Bg exp (m; 2) .. (39)
and 0’ = (1/7,) (b, Bs exp (m) 2) + by, Bg exp (m 2)], .. (35)

where B;(i = 0, 1, 2, ..., 6) are arbitrary constants, and

by, =R =V +my , V), ... (36)
by =R (P -a)+my e
by 4=K{01 S/ = (/e | =my 4 1+ (/). .. (38)
and o= V(I +ion), p=V (1+ion), .. (39)

where o, is velocity of sound wave and m,l and m'2 correspond to thermal wave and modified
longitudinal wave in liquid medium and are obtained from equations (22) and (23), if we let
u=x=a=p=y=0.

Here we assume that the boundary conditions at the interface z = O are independent of x
and 1, so the values of the phae velocity and wave number in ¢, ¥, 6, ¢, must be same as those in
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¢ and €. We consider the continuity of stresses and displacements at the interface z = 0 as

o, =0,

zZ zz’azzzo’ Uy =us,

m, =0, 6=6, K'(06/92)=K" (96/92).

.. (40)

Making use of the potentials given by eqs. (30) to (35) in boundary conditions (40), after
using the egs. (1), (2), (7) and (8), we get a system of six nonhomogeneous equations which can

be written as

6
D a;Z=b(i=12 .,6),
J
h —(A+2 2 _AK-pb., a=(A+2 2 AR -pb
where ap=@A+2u+x)m; - -pby, ap=A+2u+K)my,-Ak"~pb,,
as=-X mE -k +p' by, ayg=— A (my? — k%) + pf by,
Ay =i u+Kr)mk, a)y=i@2p+K) myk, ays=0=a,,
2 2 2 2
a3 =—Mmy, @3y =—My, a33=1k=ay,, a5=—my, azg=—my,
a4 =g =ay5=a46=0, ay3=my by, ayy=my by,
451 =by, a5 =by, as3=a5,=0,
ass=— Y/ %) by> as6=— /) by
agy =m by, ag;=my b, agy=ag, =0,
"65=(K* YO/K* Yo ™, by a66=(K*I 7’0/1(k Yo) My by
and by =-a,,, by =a,), by=ay,, by =ay,, bs=-as,, bg = ag,,

and (Zj) are the amplitude ratios for various reflected and refracted waves.

NUMERICAL ANALYSIS

.. (41)

.. (42)

To explain the analytical procedure presented earlier, we now consider a numerical example. The
results depict the variation of the angle of incidence with the modulus of the amplitude ratios in

the context of water-aluminium epoxy composite.
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Physical constants for water

p'=1.0 gm/cm’, o =1.439x10° crss,

K" =0.144 cal/cm s°C, C* = 1.0cal/gm® C.

Following Gauthier23, the physical constants for aluminium-epoxy composite
p = 2.19 gm/cm®, 1=7.59x 10! dyne/cm?,
1=189%10"" dyne/em?, k=0.0149x 10'! dyne/cm?,

y=0.0268 x 10! dyne, j = 0.0196 cm?,

K" = 048 callem °C, C* = 0.206 cal/gm°C,

8,=20°C, & = 0.073, &/ ay =200.

Nayfeh and Nasser** took t0=3]("k /p C* o?. We, therefore, take t;)=313* /p' C* af and

t0=3K* /pC* V? t," and 1| are considered to be of same order as that of #," and f,,

For the above values of relevant physical constants, the system of equatrions (41) in
reduced form for L-S theory, G-L theory and in absence of thermal effect has been solved for
amplitude ratios by using the Gauss elimination method for different angle of incidence varying from
0° to 90°. The variations of the amplitude ratios for various reflected and refracted waves with the
angle of incidence have been shown graphically in figures 2 to 7.

The variations of the amplitude ratios for reflected thermal waves with the angle of incidence
have been shown in Fig. 2 for L-S theory and G-L theory by solid line and solid line with centre
symbols respectively. The amplitude ratios decrease with the increase in angle of incidence for both
of L-S and G-L cases and they attain their minima near I = 72°. The comparison between these
two line curves shows the effect of second thermal relaxation time. Also, if we neglect the thermal
effect, these thermal waves will disappear.

The amplitude ratios for reflected longitudinal displacement waves (LD waves) for L-S theory,
G-L theory first decrease and then increase to their respective maxima. The variations for these
amplitude ratios with the angle of incidence have been depicted in Fig. 3. The solid curve in Fig.
3. represents the variations for L-S theory whereas the solid curve with centre symbols represents
the variations for G-L theory. Also, if thermal effect is neglected, then these variations reduce to
those .shown by dashed line in Fig. 3.

The variations of the amplitude ratios for two sets of reflected coupled waves with the angle
of incidence have been shown in Figs 4 and 5. These two sets of coupled waves show the oscillatory
variation with the angle of incidence for both L-S and G-L cases. The comparison between solid
line and solid line with centre symbols shows the importance of second thermal relaxation time.
Also, if thermal effect is neglected, then these variations reduce to those shown by dashed lines in
Figs. 4 and 5.

The variations of the refracted thermal waves for L-S theory and G-L theory have been
shown in Fig. 6. If we compare the solid line with the solid line with centre symbol we observe
the significance of second thermal relaxation time taken by Green and Lindsay .
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The amplitude ratios for refracted longitudinal waves for both of the L-S and G-L cases first
decrease to their minima and then increases sharply. The variations of these amplitude ratios for L-S
case and G-L case have been shown in Fig. 7 by solid line and solid line with centre symbols
respectively. The dashed line in Fig. 7. represent the variations of the refracted LD wave with the
angle of incidence in absence of thermal effect.

CONCLUSIONS

Details numerical calculations have been presented for the case of micropolar thermoelastic waves
incident at the interface of the model considered. The variations of the amplitude ratios for various
reflected and refracted waves in G-L case are different from those L-S case. The comparison between
the amplitude ratios for L-S case and G-L case reveals the effect of second thermal relaxation time.
The results are also compared with the results obtained after neglecting the thermal effect.
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