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REFLECTION OF PLANE WAVES AT A PLANAR VISCOELASTIC
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The problem of the reflection and refraction of plane waves (P- and SV-waves) at an interface between viscoelastic
solid half-space and micropolar elastic solid half-space with stretch is considered. The amplitude ratios for the
different reflected and refracted waves have been calculated. Numerical values of amplitude ratios have been

computed and plotted against the angle of emergence (9;) as well as with the angle between the propagation
vector and attenuation vector (}p).
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INTRODUCTION

The observed attenuation of the seismic waves in the earth, an important source of information
regarding the composition and state of the deep interior cannot be explained by assuming the earth
to be an elastic solid. Keeping this fact in mind several problems on reflection and refraction in a
linear viscoelastic solid have been discussed by many research workers®

The discrepancy between the results of classical theory of elasticity and the experiments
appears in all cases when the microstructure of the body is significant, i.e., in the neighbourhood
of cracks and notches where the stress gradients are considerable. The discrepancies also appear in
granular media and multimolecular bodies such as polymers. The influence of the microstructure is
particularly evident in the case of elastic vibrations of high frequency and small wavelength.

Eringen and Suhubi' introduced theory of micropolar elastic solids in which the micromotions
of the particles contained in a macrovolume element with respect to its centroid are considered.
Materials which are affected by such micromotions and macrodeformations are known as
micromorphic materials. Eringe:n2 developed a theory for a subclass of micromorphic materials which
are called micropolar media and these materials show microrotation’s effect and microrotational
inertia. Several researchers' 2> have discussed some problems on reflection and refraction in
micropolar media.

A special micropolar material was fabricated in which uniformly distributed "rigid" aluminium
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shot was cast in an elastic epoxy matrix. Gauthier!6 found this aluminium-epoxy composite to be
micropolar material and investigated the values of the relevant parameters based on specimen of
aluminium-epoxy composite. :

Eringen3 extended his work to include the effect of axial stretch during the rotation of
molecules and developed the theory of micropolar elastic solid with stretch. Composite materials
reinforced with chopped elastic fibres, porous media whose pores are filled with’gas or inviscid
liquid, asphalt, or other elastic inclusions and ‘solid-liquid’ crystals, etc. should be characterizable
by microstretch solids. C

To relate macroscopic responses of matter to effects taking place on the microscale involves
consideration of microstructural entities ranging from atoms through crystal lattice defects and on to
cracks and gross inhomogeneities. In some cases, microstructural features play a passive role such
as that of scattering of waves. In other cases, these features play a more active role, with their
evolution giving rise to flow and fracture, change in chemical composition of matter, or other inelastic
effects.

In the present problem, we consider the reflection and refraction of plane waves (P- and
SV-waves) which are obliquely incident at an interface between the linear viscoelastic solid half-space
and micropolar elastic solid half-space with stretch. As such a model may be found in the earth’s
crust, so the results of our problem can be applicable to the earth’s crust, to a water-mud-rock
boundary, or to some other specific problem in engineering or seismology like bedrock-soil interface
or mantle-crust interface.

BASIC EQUATIONS AND THEIR SOLUTIONS

Following Borcherdt'!, the equation governing the small motions in a linear viscoelastic solid may
be written as

(K +aM /3) V(V-u*-M" Vx (Vxu'y=p,u o (D

where symbols K" is the complex bulk modulus, M is the complex shear modulus, p, is the density

of linear viscoelastic solid and u’ is the displacement vector. Superposed dots on right hand side
of eq. (1) stand for second partial derivative with respect to time.

The stresses in the viscoelastic solid are given by

oy=(K'-2M"/3)88,+2M" ¢, -
where
1| ouy o .
=5 5-+5 |, 0=V-u’, E)
™21 o, o,

Using Helmholtz’s theorem
W=V +Vxy, V.y =0, - 4

we can show that ¢" and " satisfy
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oV =" and BV =y ", : v (5)

where o = (K" +4M'/3)/p,, P =M"/p,, ¥ =-(¥), | . (6)

Following Eringen?3, the constitutive and field equations in a micropolar elastic solid with
stretch without body forces and body couples can be written as

Oy = Aty G+ My )+ uy )+ Ky = &y, ), | (D

mk[:ﬁO erkl d?*r‘l- a¢r,r6k[+ﬁ¢k’ 1 + Y¢[, k (8)

B,=0, d”*k*‘(ﬂo/?’) Eprl ¢,.’ » o (9)

(cf+c§) V(V-u)—(c§+b§) VX(VXu)+c§ Vx¢=u, .. (10)

E+ D V(V- = Vx(Vx g+ ) Vxu—-2ab o=, . (1)
and cz v (D*—rl O =¢ 7 .. (12)
where

2 2 2

c; =A+2u)/p, c,=p/p, c;=K/p,

2 .2 L2 2. .

c =VYpi, cs=(a+ Py pj, wy=c3/j=K/pj

. (13)

2 . .
Ce=20y/Pj, ry =21/ P,

where symbols A, u, &, &, B, ¥ @, By, My, p,j have their usual meanings. u, ¢ and ®" are displacement
vector, microrotation vector and scalar microstretch respectively. &, is the kronecker delta.

Parfitt and Eringen?? have shown that there exists four basic waves propagating in an infinite
micropolar solid, namely, a longitudinal displacement wave travelling with speed V,, a longitudinal
microrotational wave travelling with speed V, and two sets of two coupled transverse displacement
and microrotational waves with velocities V; and V. '

In order to solve eq. (12), we assume that wave propagates in a positive direction of unit
vector n as

@ =Dexp [ik (n-r- V(1)) .. (14)

where D is the amplitude of the wave, V is the phase velocity r is the position vector, k is the
wave number and w=kV. '

Substituting eq. (14) in eq. (12), we get
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{(kV/cg)* =k =1y} D exp [ik (m-r-Vi]=0, - (15)

where ry =1/ 0

From eq. (15), we have
2 2
V2= /(1= (ry g/ aP)), , .. (16)

Eq. (16) shows the speed of the wave given by eq. (12) and we call this wave as longitudinal
microstretch wave.

V will be real and finite only if
2
1 - (ry cg/@’) >0,
ie. if w>2'"2 @, - (1)

2 .
where w,=1,/pj.
This is the condition for the existence of the longitudinal microstretch wave.

Thus, in an unbounded micropolar elastic solid with stretch there exists five basic waves
travelling with distinct speeds.

Since we are discussing a two dimensional problem in x-z plane, we have

u=(u 0, w), $=(0,¢,0), .. (18)
u' =", 0 wh, .. (19)
where
09 .y o8 oy
& oz’ oz ok’

=%+ﬂ, w20 oV . (20)

where ¢, y; ¢° and " are potentials satisfying certain wave equations in micropolar media and linear
viscoelastic media respectively.

BOUNDARY CONDITIONS

For two-dimensional motion in xz-plane, the appropriate boundary conditions at the interface z = 0
are the continuity of stress and displacement components, vanishing of the shear couple stress and
vector first moment, i.e.,

ol e * = - = = = ‘ .. (21
=0, 0, =0, U =U,w —-w,()-mzy,O—ﬁz, at z = 0. (21

A.Z
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REFLECTION AND REFRACTION

We consider a linear viscoelastic solid and a micropolar elastic solid with stretch as half-spaces in
welded contact along a plane interface z = 0. We introduce rectangular Cartesian co-ordinates (x, y,
z) and place the origin at the interface separating the two half-spaces as shown in Fig. 1. The
micropolar elastic solid then occupies the region z < 0 and the region z > 0 is occupied by linear
viscoelastic solid.

MICROPOLAR ELASTIC
SOLID WITH STRETCH

(A 14 X, Y5 Oy By Now P )

H(Z<0)
Z=0

1(Z>0)

VISCOELASTIC SOLID
(Ku M! S\)

[

<
<

FiG. 1. Geometry of the problem

We now consider a plane harmonic seismic body wave (P or SV) with time dependence
proportional to exp (iax), propagating through the viscoelastic medium (z > 0) and incident at the
interface, z = 0, with the direction of propagation making an angle 6, with the interface.

Corresponding to this incident wave, we get waves in the viscoelastic solid as reflected P- and
reflected SV-waves and four waves (longitudinal displacement or LD-wave, two sets of two coupled
waves or CD I, II waves and a longitudinal microstretch wave) transmitted to the micropolar elastic
solid half-space (z < 0) as shown in Fig. 1.
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For linear viscoelastic solid (z > 0), the potential functions ¢* and y* for incident and
reflected waves are as follows :

¢"=Bjexp (A, 1) exp [i(ax + Py - )]

+ Bl exp (A, r)exp [{(ax+Py-r)] - (22)
and t//* = BS exp(Ag - r) exp [i(wx + Py - r)]
+ B; exp (A, - r) exp [i(wx + Py - r)], - (23)
where
(a) for an incident P-wave
Py=kp,x—dog,z, Ag=-k,, x+da,, z’—-
Py=kp,x+dag,z, Ay=-k, x-doy,
P2=kRex+dﬂReZ, A2=-—klmx-dﬂlmz; . (24)
(b) for an incident SV-wave °
Py= kRex—dﬁRe 7, Ag=—k;,, x+ dﬁlﬂ z’—
Pl =kRex+daRe z, A1=—klmx—d(x[m 2
Py=kp,x+dPp,z, Ay=—k;, x-dB,, 2 | .. (25)
where
do=p-v- (/&) -K)* = da, +day,
and dB=p-v- (/B - kD" =dBg, +dB,, - (26)

and k=Kk'p, +ik'|, is a complex wave number (P. V. stands for the principal value of the complex

number) and k’p, 20 to ensure the propagation in the positive direction.

For micropolar elastic solid, we have the potentials functions as follows :

¢ = B, exp [ik, (x cos 6, —zsin 0)) + iw,t], .. 27

y= B, exp [i; (x cos 6, -z sin 6,) + iw,1]

+ By exp [i6,(x cos 6; — z sin 6;) + iw;t], .. (28)
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¢, = EB, exp [i8, (x cos 6, — z sin 6,) + iw,1]

+ FBj exp [id, (x cos 6; ~ zsin 6;) + iwst], .. (29
@" =GB, exp [ik, (x cos 6, z sin 6,) +ia, 1], - (30)
where
E=5|6-— qu /p 2q—z
c,+c3
and F=5; (32 —7——2' pq p 2q— 2 , .. (31
C2+C3
where
p=WH+K), =K1,
2
L= (B-(B-440"12
=123, 2] ) +“1§
a72 (c2+c3) 4
and C=—§-l——2— Lz_g_‘]_ .. 32)
(c; +¢3) of

and G is the constant of dimension L2

When a general type of inhomogeneous plane wave travelling in a linear viscoelstic medium
is incident at the interface, following Borcherdt!3, we have

K =Py cos 6 —il Ayl cos (6)+ 1), . (33)

In order to satisfy the boundary conditions for all values of x at z = 0, it is necessary to
assume k' = k (real) and hence from eq. (33) 6,=90°-y, (1Aql=0); that is, the incident wave

field is that in which the general plane wave is attenuating perpendicular to the interface. Following

Borcherdt!3, the extension of Smell’s law will be
. -1 1 —1 .
k=ke =1 P;lcos 6 = V; ' cos 8,=V; cos 6=V, cos 5=V Tcosf, (1= 0,1, OV

and

~ky =1Ag 1 cos (6)+ 1)), - (35)
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and
W, =0,=0;=w,=0 (say) at z = 0. .. (36)

Making use of the potentials given by equations (22), (23), (27) to (30) in the boundary
conditions (21), after using the equations (2), (3), (7) to (9), (18), to (20), (24), (25) and (31), to
(36), we obtain a system to six nonhomogeneous equations as

6 , - (37)
Y 4;Zi=b(i=12 ..6)
j=1 -
where
* * * * *
Z,=B|/By, Z,=B,/By, Z;=B,/B,
* * *
Z,=B,/By, Zs=B,/B, Z,=B,/B, - (38)

are the amplitude ratios for reflected P - wave, reflected SV-wave, refracted longitudinal displacement
wave, two refracted sets of two coupled waves (CD I and CD II) and refracted longitudinal
microstretch wave (LMS-wave) respectively,

ay, ==2M" + (K" +4M"/3) (1 + do?/k?), ay, = - 2M" (dP/k),
a3 =~ [A+ QU+ K sin® 8] (ko/k)%, a4 == [+ 1) cos 6, sin 6,] (8,/k)7,
a5 =-[(21+ K) cos 65 sin ;] (52/k)2, a;s=0,
ay, = 2M* (do/k), ayy = M* [(dF*/K%) - 1],
ayy = 2+ K) cos 6, sin 6, (ky/k)%,
_ .2 2 2
@y = (U cOs 260, — Ksin” 6,) (8,/k)° - KE/k",
_ ) 2 2
a5 = (U cos 260; — ksin” 6;) (8,/k)” = kF/k®, aye =0,
ay =—1, a3, == (df/k), a33=(ky/k)cos 6,,
a3y =—(8,/k) cos 8), as5=-(8,/k) cos 3, a3 =0,
a41 = — (d(X/k), a42 =-1, 043 = (ko/k) sin 9],
ay,=—-(8,/k) cos 8,, a,s=-(8,/k)cos 0;, a,=0,

a5, = a5y =a53=0, agy = (5]/k) sin 6,,
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ass = (F/E) (8,/k) sin 65, ase = (B G/ YE) (k,/k) cos 6,
ag; =ag, =ag3=0, ag, =—(By/30ay) (6,/k) cos 6,,
ags =—(By F/30, E) (6,/k) cos 83, agc = (k,G/kE) sin 6, .. (39

and b; (i = 1, 2, ..., 6) are given as follows :

(a) For an incident longitudinal displacement wave

by=—-ay, by=ay,, by=-ay;, by=ay, bs=as), bg=ag, ... (40)
(b) For an incident set of coupled transverse displacement and microrotational waves

by=ay,, by=-ay, by=ay,, by=-a,, bs=as,, bg=ag, - (41

NUMERICAL RESULTS AND DISCUSSION

Following Gauthierm, we take the following values of relevant parameters for aluminium-epoxy
composite {micropolar elastic solid) as

p = 2.19 gm/em’, A=7.59 x 10''dyne/cm?, =189 x 10'! dyne/cm?,

y=0.268 x 10'" dyne, j = 0.0196 cm? x = 0.0149 x 10'! dyne/cm?,

wz/wZ-—- 10, 0y=0.02 dyne, 3, 0.04 dyne, 7, = 0.05 dyne.

Following Silva?3, the physical parameters representing the crust as a linear viscoelastic
solid are as follows

Q

p s

= 100, @ =45, p; = 2.6 gm/em’, V, = 6.1 km/s, V, = 3.5 km/s.

For the above values of the relevant parameters, the system of eqs. (37) are solved for
amplitude ratios by using the Gauss elimination method for different values of € and y, varying
from 0° to 90° when a)z/w(z)z 10. The variations of the modulus of the amplitude ratios 1 Z;1, (i =

1, 2, ..., 6) for reflected P - and SV - waves and refracted LD-CD-I, CD II - and LMS- waves
with the angle of emergence 6 as well as angle ¥, from incident P - and SV-waves have been

shown by solid and dashed lines respectively in Figs. 2 to 13 (waves).

(a) Incident P-wave

The variations of the amplitude ratios IZLI for reflected P- waves with the angle 9(*) as well as with
angle ¥, have been shown in Fig. 2 by solid and dashed line respectively. The variations of amplitude
ratios as shown in Fig. 2 by solid and dashed lines are found to be monotonic in nature. It has its
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maxima at 90 32° and minima at 90 90° whereas it is maximum near %= 85° and minimum
near y, = 20°. The variations of the amplitude ratios [Z,! for reflected SV-waves with the angle

60 as well as with angle ¥, are similar to those for reflected p-waves and have been shown in Fig.
3 by solid and dashed line respectively.

The variations of the amplitude ratios | Z; | for refracted LD-waves with the angle 6] as well
as with angle 1, are also monotonic in nature as those of reflected P- and SV-waves and have
been shown in Fig. 4 by solid and dashed lines respectively.

The amplitude ratios 1Z,1 and | Zg | for refracted coupled waves (CD I and CD II) are of
oscillating behaviour. They attain their maxima at 6 = 61° and € = 90° respectively as shown by
solid lines in Figs. 5 and 6. The variations of these amplitude ratios with angle ¥, are also oscillatory
and have been shown by dashed lines in Figs. 5 and 6 respectlvely They attain their respective
maxima at ¥, = 58° and ¥, = 26°.

The amplitude ratios | Z¢ | for refracted LMS-wave have their maxima at 6 = 27° and at
¥, =288 The variations of the amplitude ratios | Z¢ | with the angle 6}, as well as with angle y, are

also monotonic in nature and have been shown in Fig. 7.

(b) Incident SV-wave

The variations of the amplitude ratios IZjI, G=1, 2, ... 6) for various reflected and refracted waves

with the angle of emergence 62 as well as with angle 7, have been depicted graphically in Figs. 8

to 13. If we compare the variations of the amplitude ratios of various reflected and refracted waves
for incident SV-wave with those of incident P-wave, it is noticed that they are similar in nature but
differ in their magnitudes, minima and maxima to some extent.

CONCLUSIONS

Detailed numerical calculations have been presented for the cases of both P and SV waves incident
at the interface between a linear viscoelastic solid as crust and an aluminium-epoxy composite as
micropolar elastic solid. Theory and numerical results indicate the dependence of amplitude ratios of
various reflected and refracted waves on angle of emergence as well as on the angle between the
propagation vector and attenuation vector. The problem may be of physical interest in the fields of
seismology, geophysics, earthquake engineering, etc.
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