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The problem of reflection and transmission of plane periodic waves incident on the
loosely bonded interface between an elastic solid and a micropolar elastic solid is
discussed with the assumption that the interface behaves like a dislocation which
preserves the continuity of stress allowing a finite amount of slip. It is further
assumed that the normal displacement is continuous and the shearing stress is
proportional to the velocity of the slip. Amplitude ratios are computed numerically
for a particular model and are plotted for different degree of bonding parameter. Two
special cases have been discussed.
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INTRODUCTION

The linear theory of elasticity is of paramount importance in the stress analysis of
steel, which is the commonest engineering structural material. To a lesser extent linear
elasticity describes the mechanical behaviour of other common solid materials, e.g.,
concrete, wood and coal. However, the theory does not apply to the behaviour of
many of the new synthetic materials of the elastomer and polymer type, e.g.,
polymethyl-methacrylate (perspex), polyethylene, polyvinyl chloride.

The micropolar theory of elasticity constructured by Eringen and his coworkers!-
and Palmov!? intended to be applied on such materials and for such problems where
the ordinary classical theory of elasticity fails because of microstructure in the
material.

Metal, polymers, composites, solids, rocks, concrete are typical media with
microstructures, Most of natural and manmade materials possess a microstructure.
Classical elasticity is inadequate to represent the behaviour of such materials. The
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discrepancy between the classical theory of elasticity and the experiments is
particularly striking in dynamical problems, as in the case of elastic vibrations
characterized by high frequency and small wave lengths, ie., for ultrasonic waves.
This discrepancy results from the fact that for high frequencies and small wave
lengths, the influence of the body microstructure becomes significant. The classical
theory of elasticity eventually fails in the case of vibrations of grain bodies and
multimolecular bodies. The influence of the microstructure becomes here considerable,
and result in development of new type of waves, not found in the classical theory
of elasticity. When the wave length is of the same order of magnitude as the average
dimension of the microelements, the intrinsic motions of the microelements with
respect to the centre of mass of body can affect response appreciably. This situation
prevails in practical applications when the material under consideration is a composite
material containing macromolecules, fibres, and grains. Solid propellant grain,
polymeric materials, and fibre glass are but a few examples of such materials.

A special micropolar material was fabricated in which uniformly distributed
‘rigid’ aluminium shot was cast in an elastic epoxy matrix. Gauthier’ found this
aluminium-epoxy composite to be micropolar material and investigated the values of
the relevant parameters based on specimen of aluminium-epoxy composite.

Many problems of waves and vibrations have been discussed in micropolar elastic
solids by several researchers. Notable among them are Parfitt and Eringen*, Smith’,
Tomar and Gogna® 7, Tomar and Kumar®, etc.

In problems of reflection and refraction of seismic waves at the interface between
two elastic half-spaces, it is usually assumed that the half-spaces are in welded
contact. However, the presence of liquid in the porous skeleton may weaken the
welded contact at the interface. Hence it is reasonable to assume that a very thin
layer of viscous liquid may be present at the interface and cause the two media to
be loosely bonded. Murty? discussed a very interesting problem of reflection,
transmission and attenuation of elastic waves at a loosely bonded interface between
two elastic solid half-spaces by assuming that the interface behaves like a dislocation
which preserves the continuity of traction allowing a finite amount of slip and derived
the case of welded contact and ideally smooth interfaces as particular cases.

The micropolar theory of elasticity which was developed in sixties by Eringen
and his coworkers!" 2 and availability of experimental data for various parameters of
the micropolar material provides us a chance to consider such problem of reflection
and refraction where aluminium-epoxy composites as micropolar elastic solid is in
loosely bonded contact with the crust as elastic solid. As such model may be found
in the earth’s crust, so the resuits of our problem can be applicable to the earth’s
crust, to a water-mud-rock boundary, or to some other specific problem in engineering
or seismology like bedrock-soil interface or mantle-crust interface.

BASIC ASSUMPTIONS

Murty® defined a real parameter (bonding parameter) to which numerical values can
be assigned corresponding to a given degree of bonding between half-spaces and
discussed the cases of ideally smooth and fully bonded interfaces corresponding to
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the values 0 and o« of the bonding parameter. Murty® carried his study by making
two basic assumptions. The first assumption is that the loosely bonded interface
between two solid half-spaces behaves as a Somigliana dislocation (Hill'%) and assures
continuity of traction across the interface. The second assumption is that there exists
a complex linear relation between slip and local shear stress. Regarding the second
assumption, Murty® suggested the only guiding principle that there must exist some
relation between stress tensor and the ‘slip’ at the interface such that when shearing
stress is zero, the ‘slip’ is undetermined and when the ‘slip’ vanishes the interface
behaves as a welded contact. For numerical purpose, we may assume that

Shearing stress = K x slip . (1)

at the interface of loosely bonded media so that the vanishing of K, corresponds to '
an ideally smooth interface, and infinitely large values of K, correspond to a welded
interface. The intermediate value of K, represent a loosely bonded interface.

We assume a model of viscous layer between an elastic solid and micropolar
elastic solid half-space. If the thickness of layer be D and 7 be the coefficient of
viscosity. As D — 0, the thickness of layer is infinitely small, therefore, it is
appropriate to suppose the shearing stress at the interface in the following form

My
1U=q(7&—), ... 2)

. du
where 142=—OT2 and u, is the component of displacement along the interface and

partial derivative is taken normal to the interface.

We can write eqn. (2) as

'n='7Dl(a2—i4'z) -3

where u,—u’, is the jump in the y-component of slip velocity across the layer.
Assuming the pulse propagation to be time harmonic, equation (3) can be written as

tzy=ia)(-%)(u2—u'2) - (@

where @ is the angular frequency and the difference u,-u; of displacement com-
ponents parallel to the interface represents the slip.

BasiC EQUATIONS

Following Eringen’, the equations of motion in a linear, isotropic, micropolar elastic
medium without body and surface forces are given by

(C+C) PV D~ (G+C) Px(Pxi)+C Pxg=i - (9

(C3+CY) V(7 )~ G Vx (VX §) + ah Vx> 208 5= 3 e (6)
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where
C=@+2yp, G= % ]
K
3=, Cﬁ:}%’ . (D
o+
G=@A, d=ci=K

pl’ -

AuK apy are matenal moduli, p is the density of the medium and J the
microrotational inertia. ¥} X,’t) and ﬂx 1) are displacement and microrotation vectors

respectively.
Writing the vectors #and ? as

W=Vg+Vxg, V-7=0, . (8)

F=VE+VPx@P V- F=0. (9

Using the equaiions (8) and (9) in equations (5) and (6), we get

(CI+ ) Vg=¢q, . (10)
(Co+CH PE=20R &+, . (1D)
B+ M+ G Vx B=17, . (12)

CPrPB+hVx7-24 3= .. (13)

Parfitt and Eringen* have shown that there are four basic waves propagating with
different phase velocities in an infinite micropolar elastic solid :

(i) A longitudinal displacement wave propagating with speed
Vi=(A+2u+K)/p, . (14)

similar to that of dilatational wave of the classical theory of elasticity.
(ii) A longitudinal microrotational wave travelling with speed

Vi= (a+ﬂ+y)/{pl(l— szn .. (15)

with its microrotation vector in the direction of propagation.

(iii) Two sets of coupled waves, one travelling with speed -‘V; and the other
with speed V, consist of transverse microrotation waves. V; and V, are
given by
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1
V§..=—2(—l:5[d+6%+6%-(6%+02/2)x
t{C-C-C+(G+Crx? + 26 G}, - (16)
where
x = 208/ a?.

The waves travelling with velocities Vyand V3 can exist only when
@> w, (=V2 ay); otherwise they degenerate into distance decaying vibrations from
the source.

The force and couple stresses given by Eringen!

tu=A uy, , O+ gt (g 1+ g )+ K (g1 — €t B - (17)

Mmy=a’, 64+ b1 +7 Pii, - (18)

where symbols have their usual meanings.

For a homogeneous isotropic elastic solid, the Helmholtz resolution for the
displacement

u,=grad ¢, +curl ¥, .. (19)

the potentials are found to satisfy the wave equation

_1 24, .. 20)
m’e—? &2 ’
_1 2y . 21
V‘V:-F o
where
=4+ pe . P=H/Pe - (22)

The stresses in classical elasticity is given by

Iy =A¢ u, , Ju +ﬂ,(uk' 1+ k)' .. (23)

FORMULATION OF THE PROBLEM AND ITS SOLUTION

Let M(Z > 0) and M’(Z < 0) be the elastic and micropolar elastic half-spaces loosely
bonded at a plane surface Z = 0. We assume that plane periodic waves (P or SV)
are incident from the side which we designate as the region Z > 0. In. this region,
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we write all the variables without a prime, and we add a prime to denote the
variables in the region Z < 0. The Z-axis is pointing downward into the medium M.
The complete geometry of the problem is given in Fig. 1.

Al.x,vl

M:INU K F, Y, T
1:0

Y
z

FiG. 1. Geometry of the problem.

The problem is two-dimensional in (Y — Z) plane, therefore, we take

= (0, uy, u3), .. (24)

=0 u,u3), §=(#,00), .. (25

the components of displacement in elastic medium and the components of displace-
ment and microrotation in micropolar elastic medium.

The appropriate potentials for this problem are given by :
In medium M : (Z > 0)

@»=a, explik; (cos Gyy — sin Gy2) — iy, 1]

+ a, explik, (cos By + sin 6,2) —ia) 1] ... (26)
V. = By explik, (cos 6y — sin 6y2) - iw, ¢]

+ B expliky (cos &y + sin &2) — ian 1]. .. 27

In medium M : (Z < 0)

¢ =ay exp [ik; (cos 6 y - sin & z) ~ i, 1) .. (28)
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a, =7 [A;,x] exp [ik;, (cos 0;, y -sin 0;, 2)- ia);, 1 . (29)

5:, = [B;,y}+ B;,Z Kexp [ik,', (cos G;y —sin 0,’, 7)- ia); 1, - (30
where

@ = ki vi i=.2), |

=kt vy, . (31

w;,-:k,',v,',, =34,

a, (or By) and a,, B are the amplitudes of incident P or (SV), and relfected P- and
reflected SV-wave respectively; while a; denotes the amplitude of refracted lon-

o . - - . .
gitudinal displacement wave and A and B, are the amplitudes of transverse displace-
ment and transverse microrotational wave.

—
Parfitt and Eringen* derived the relation between the coefficients A, and B—Z as

” .’
- i A, od !
B=-|77 wo,zJ,_z 5 (—smﬂp,?—cosa,,l’\() - (32)
k2 (2 - 206 K, 2= C,

BOUNDARY CONDITIONS
The boundary conditions at the loosely bonded interface Z = 0 between an elastic

and a micropolar half-space are :
(i) Continuity of the normal force stress across the interface Z = 0, i.e.,

(tdie= s -

(ii) Continuity of tangential force stress across the interface Z = 0, i.e.,

[tzy]M = [t;y]M' .

(iii) Continuity of the normal displacement across the interface Z = 0, ie.,

[us]ae = [3lar -

(iv) The couple stress vanishes at Z = 0, i.c.,

0= [m;lu'-
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(v) Shearing force stress is proportional to the slip at the interface Z = 0.
For numerical purpose, we shall write the last boundary condition as

[‘zy]u=‘7‘#¢(;;s£§; )(uz-“;),

where

{=%, and 00=cos“(%] .. 33

is the angle of emergence and V, is the velocity of incident plane periodic wave.

v
1-y"

The range 0<{<e shall be mapped on the range 0<yp*<1. Thus " = 0
corresponds to a smooth surface and y* = 1 corresponds to a welded interface
between the two half-spaces. ¥* may be considered as a bonding constant. Thus the
last boundary condition can take the form

It is convenient to introduce a variable ¥*, 0 < y* <1 such that {=

(tyyJae = ikas, (0 - ). . (38

v
(1-y)cos 6
Substituting the values of potentials given by equations (26)-(30) in the above

boundary conditions and making use of equations (8), (9), (17) - (19), (23) - (26),
(32) and (34), the Snell's law given by

coséy cosé cosb cos 0'1 cos 0'3 cos 0:
= = = 7 = ’ = 7 ves (35)
Vo a V-4 1 1A Vs

where

a for an incident P-wave
Vo= ... (36)
A for an incident SV~wave

and assuming
0 =w,=0 =0y =ay=o (say) at Z = 0. e
We obtain a set of five non-homogeneous equations and these equations can be

written in compact form as

5

Y aiZi=b, (=12 ..,59), - (38)
i=1

where Zj, (j = 1, 2, .., 5) arc the amplitude ratios of reflected P-, reflected SV-,
refracted longitudinal displacement, coupled transverse displacement and coupled
transverse microrotational waves, respectively, and
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B

2

an=| g+ zf" [3) cos” b

a3 =- EJ

V, 7
ays=— D, cos By 7° V1 = (V3/ V)2 cos? 8,
3

ais _—Dl cos 00 V ‘\ll —(V4/V0)2 COS2 60
4

Vi a
a2,=—%cosﬂozjl \/1—[70])‘:05250
2 2
_He| Vo y:A 2
aﬂ_K’(ﬂ][z(Vo) cos 00-1:|

Yo v 2 cos?
apn=-D,—, v cos&o 1—(V,/Vo) cos? 6,

r 2

’

Vo

- 2

V 7 ’
2 —éJ cos? gy—-1 ]—\/1 ~ (V3/Vg)? cos? 6, -
R,
.J

1141

-

-

2 ,
%{2 !4-) coszﬂ)—l]—Vl—(V;/Vo)zcoszao—L,

Vo

sz

Vo'\/ (&Y s
ay=" 1 (Vo)cosao

Vi y
ay) =-—Cos 80, ass =_? 'ﬁ - (Vl/Vo)z cos? &)
1

ay=cos &, ay=cosbh, ay=an=a43 =0

= L, V1 = (V3/Vg)? cos? 6,
1
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RN)
, V,
aas = N1 = (Vi VoY cos? 6 /| —
R] V3

asi=cos 6| ¥~ 21-¥) ‘\/1-[3] cos” 6

Yo
(%Y
as;= ﬂ

2

2(£) coszﬂo—l}(l—(l’)
Vo

+ V% 1—(%)2c05200

a
as3=-VVoCOS¢90

ass =¥ —V‘l V1= (Va/ Vo) cos? 6,

3

ass=y* Z 1= (Vi/Vp? cos?
Vi
and

b;i=1,2, ..,5) will be as :

(a) For an incident P-wave
by=-ay, by=ay, by=ay, by = 0,
bs=—cos G, [y* + 2(1 ~ ¥*) sin 6]
(b) For an incident SV-wave
bi=ay, by=-ap, by=ay, by = 0,

bs=-[cos 26, (1 - ¥*) - ¥ sin 6]

where

2,72
: @, CiK
D.=%+l, R=%5-2-222
o ax
; @P i}
Ry==3-2-—5
Wy

ay
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SPECIAL CASES

(A) To discuss the problem of reflection and refraction of plane harmonic waves at
an interface between the elastic solid and micropolar elastic solid half-space in welded
contact, we put ¥ = 1 in the boundary conditions and obtain a set of five
non-homogeneous equations which can be written in compact form as :

5
2 a;Zi=b, (=12 .5 . (39)

where
aj=a; (,j=123 4

as, = cos 6,

a;2=%\/1‘(%]2°05290

. a
asy=—;cos &
(3

al = —“-”— V1 = (Vo/ Vo)t cos? 6,

3

ass = !'l,' Vi- (V;/Vo)2 cos? &,
4

bi=b (i=12, ..,24)

*
. —as;  for incident P-wave
bs

as, for incident SV-wave.

(B) If we let K’=v’ = 0 and replace 6, by 6, — 90° in the system of equations
(38), we obtain a set of four non-homogeneous equations, which again can be written
in compact form as

Y Cizi=d, (=12 ..,9 ... (40)

where
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ol (] wal[2]

Ci2=24, sin 6’0% \/1 {%)lsinz 6o

2

y 2
C,3=—|:/1’+2//[1—[¥:;] sinzﬁo] [{%]
1

Vi 4
Cia=—24 sin 6, ;,f V1 - (Vy/ Vo) sint 6,

IR

V, ay.
C2,=—2/1,sin00-6—3 \/l-[VJ sin? 6

0
V. 2
anﬂe[—ﬂg]

2
2(%) sinzao—l}

v, ,
Cp=-24 7” sin 8, V1 ~ (V,/V,)?sin? 6,
1

2
2 s
Vo V3 .
Cu=-|— 12| =1 sin?6,-1
* (Vs){{VOJ % ]
Vo'\/ _ £2-2
C3l=-‘-z—_ 1 {Vo)smgo

V 7 n
Cyp=-sin By, Cyy=—2N1-(V,/Vy)?sin? 6,
Vi

C34 =sin 6,

C4|=sin¢90[y/‘—2(l—y/‘)vzo Vl—(%] sin2 &, jl

2

C42=(%9J “2[%) sinzao—l](l—vf)

+V‘%\/1"(%T5inzﬁoJ
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a .
C43=-V'Vosmﬂ)

Cu=y EN1-(Vy/ Vo sin® 6,

3
and
d, (i=1,2,.,4) will be as :
(a) For an incident P-wave
dy=-Cyy, dy=Cy,, d3=Cjy, dy=~sin G [y +2(1 - ¥*) cos &].
(b) For an incident SV-wave
dy=Cyy, dy=-Cyp, dy=Cyj, dy=cos26,(1 -y} + ¥ cos &.
with the constraints K’ = ¥ = 0, we observe that
Vis(W+2w)p =o - (41)
the speed of longtitudinal wave in elastic medium

Vi=u/p =2, .. (42)

the speed of shear wave in the elastic medium and V: = 0, implying that the
corresponding coupled transverse microrotational wave does not exist and hence

A, = 0.
If we let Vy=a in eqn. (40), ‘then these equations correspond to the case of
incident P-wave at a loosely bonded interface discussed by Murty®.

NUMERICAL RESULTS

Following Bullen'!, we have the following values of density and elastic parameter
for crust as elastic solid

A, = 2.238 x 10! dyne/cm?
M, = 2.992 x 10! dyne/cm?
Pe = 2.65 gm/cm?,

Following Gauther’, we have the following values of density and micropolar
“elastic parameters for aluminium epoxy composite as micropolar elastic solid

A = 7.59 x 10" dyne/cm?, £ = 219 gm/cm?
& = 1.89 x 10" dyne/cm?, J = 0.196 cm?

K = 00149 x 10" dyne/cm?, @*/ak = 10.
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A computer programme has been developed and amplitude ratios of various
reflected and refracted waves have been computed. For the frequency ratio a)z/aﬁ
= 10, the variation of these amplitude ratios with the angle of emergence have been
shown in Figs. 2 to 25.

(i) Incident P-Wave

The variations of amplitude ratios with the angle of emergence of the incident
P-wave have been studied for the values of bonding constant ¥* = 0.0, 0.25, 0.50,
0.75, 1.00. The nature of dependence of amplitude ratios of different reflected and
refracted waves on the angle of emergence is, however, different for different values
of the bonding constant. The variations of amplitude ratios 1Z;1, (i =1, 2, ..., 5)
with the angle of emergence for different values of bonding constant are shown in
Figs. 2 to 14.

It is observed that the amplitude ratios 1Z, i of reflected P-waves for different
values of bonding constants have some initial value one at &, = 0° For y* = 0.0
and " = 0.25, it decreases sharply to values 0.2¢ — 001 and 0.514e ~ 002 at &, =
8° respectively. Beyond &, = 89, it increases to values 0.3843 and 0.378 at §, = 34°
for y* = 0.0 and ¥* = 0.25 respectively, thereafter, it decreases uniformly for both
the values of bonding constant. For ¢* = 0.50, the amplitude ratio of reflected P-wave
decreases sharply to a value 2.279¢ — 002 at &, = 6°. For the range 6°<6,<28°,
it also increases and attains a value 0.393 at §, = 28°. Beyond 6, = 28°, it decreases
uniformly. The variations of amplitude ratios of reflected P-wave for §* = 0.75 and
v* = 1.0 is different from the amplitude ratios of reflected P-wave for ¥* = 0.0,
0.25, 0.50. For * = 0.75 and y* = 1.0, the reflected P-wave has oscillating character.
For ¢ = 0.75 the amplitude ratio of reflected P-wave oscillates for the range
0° £ 6y < 90°, attaining two peaks, one at &y = 26° and the other at 6, = 55° while
for y* = 1.0 it has its maxima at &y = 34°, though oscillates. These variations have
been shown in Figs. 2, 12, 13 and 14 respectively.

1 0—‘ 0.20
e Z, — % 0.
~ [71] — ¢*s 00 ~ored S Iy |7l "’"Oo
: °_._1 ,l" _-_¢= 0.25 g 0164 ,/ \\\ ,Zzl---(P = 0.25
° 0.6 o
L
;% 0.4 3
F :
. y
< 0.2 a
0.0 . . 0.00
0 18 36 sS4 72 %0 0 18 3 S¢ 72 %0
incident P-wave(indeg) Incident P-wave(in deg.}
Fic. 2 Fic. 3

The amplitude ratio 1 Z, ! of the reflected SV-wave with the angle of emergence
is different for different values of bonding constant. It obtained the value zero at
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Gy = 0° for y* = 0.0, 0.25, 0.50, 0.75, 1.00. For * = 0.0, 0.25, 0.50, the amplitude
ratio | Z, | first increases and then decreases as &, varies from 0° to 90° It attains
its maxima at &, = 43°, 29°, 18° for ¥* = 0.0, 0.25, 0.50 respectively. The amplitude
ratios of relfected SV-wave for ¥* = 0.75 and ¥* = 1.0 are different from those for
¥ = 0.0, 0.25, 0.50. For ¥* = 0.75, it increases sharply to a very high value at
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6, = 26° and oscillates for the range 26° S 6, < 36°, getting its maxima at 6, = 34°.
Beyond 34°, © it decreases sharply to zero at &, = 90°. For p* = 1.0, it oscillates
for the range 0° € & < 34°, attaining its maxima at &, = 34°, thereafter, it decreases.
These variations have been shown in Figs. 3, 12, 13 and 14 respectively.

The amplitude ratio 1Z;1 of refracted longitudinal displacement wave has its
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value zero at € = 0° for y* = 0.0, 0.25, 0.50, 0.75, 1.00. For y* = 0.0 and 0.25,
it increases slowly to the value 0.5101 at & = 90° For ¥ = 0.50, it increases
sharply to value 0.5747 at €, = 28° thereafter, it decreases uniformly to 0.5101 at
8 = 90°. For ¢ = 0.75 and y* = 1.0, the variation of amplitude ratios of the
refracted longitudinal displacement wave is different from those for y* = 0.0, 0.25,
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0.50. For * = 0.75, it increases sharply attaining two peaks at &, = 26° and 6, =
32°, Beyond &, = 32°, it decreases to a value 1.147¢ — 002 at & = 77° and increases
again to a value 0.5101 at & = 90°. For y* = 1.0, it increases to a value 6.346 at
&y = 2° and decreases uniformly to a value 1.138¢ — 002 at & = 60° It again
increases to a values 0.5101 at & = 90°. It is observed that the refracted longitudinal
displacement wave is not affected by looseness of boundary when & = 0° and &,
= 90°. These variations have been depicted in Figs. 4, 11, 12 and 14 respectively.

The amplitude ratios |Z;| and 1Zs| of refracted coupled waves have similar
variations with the angle of emergence for different values of bonding constants,
Both the waves start with zero amplitude at 6, = 0° for y* = 0.0, 0.25, 0.50, 0.75,
1.00. The amplitude ratios of these refracted coupled waves first increases and then
decreases to a value nearly zero as & varies from 0° to 90° for different values of
bonding constant. The variations of the amplitude ratios |Z,| and |1Z5! of refracted

coupled waves have been depicted in Figs. 5 to 10. These diagram clearly shows
the effect of looseness on set of refracted coupled waves,

It may be concluded that the amount of slip increases with the angle of
emergence and approaches to a maximum in the range 25° to 35°. However, when
the incidence is very near grazing incidence, the effect of interface becomes
immaterial as expected.

(ii) Incident SV-Wave

Likewise in case of an incident P-wave, an incident SV-wave gives rise to
reflected P-, SV, refracted longitudinal displacement and a set of two refracted
coupled waves. The manner in which the amplitude ratios of different reflected and
refracted waves vary with the angle of emergence is different for different values of
¥*. These variations have been shown in Figs. 15 to 25.

The amplitude ratio | Z, | of reflected P has its value zero at §y=0° for y* =
0.0, 0.25, 0.50, 0.75, 1.00. For y* = 0.0, the amplitude ratio 1Z, | first increases
sharply attaining its maxima at & =65° and decreases sharply a value nearly zero
at Gy =90°. For y = 0.25 and 0.75 the amplitude ratio 1Z; | oscillates as & varies
from 0° to 45° Beyond & = 45° it increases sharply to its maxima at & = 65°
and decreases sharply to value near zero at § = 90°. For ¥ = 0.5 it oscillates as
6, varies from 0° to 90° attaining sharp maxima at & = 65° In case of welded
interface, it also oscillates as &) varies from 0° to 90° and attains three peak values
at Gy = 42°, 50°, 70° respectively. These variations have been depicted in Figs. 20,
23 and 18 respectively.

The amplitude ratio | Z,| of reflected SV-wave has its value one at & = 0° for

¥ = 00, 0.25, 0.50, 0.75, 1.00. For y* = 0.0, it decreases to a value nearly zero
at & = 45° thereafter, it oscillates and finally attains its value one at §, = 90°. For

¥ = 0.25, it decreases slowly to its value 2.317¢-002 at 8, = 42°, thereafter, it
increases sharply to its maxima at & = 65°. As & varies, it first decreases sharply
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and again increases sharpty to a value near maximum value at & = 74°. Beyond
6y = 74°, it first decreases sharply and then oscillates minutely. For y* = 0.50 it
decreases uniformly to value 0.384 at & = 25° For the range 25°< 6, <90°, it
oscillates getting its peak values at 6, = 65° and & = 77° respectively. For y* =
0.75, it decreases sharply to a value 0.1677 at &, = 16°. Beyond & = 16°, it oscillates
getting its peak values at &, = 42°, 56° and 65° respectively. In case of welded
interface, it has its maximum value 2.923 at &, = 1° For the range 1°< 6,590°, it
oscillates. These variations have been shown in Figs. 21, 24 and 18 respectively.
The amplitude ratio |Z;1 of refracted longitudinal displacement wave has its
value zerq at-& = 0° For yp* = 0.0, it oscillates minutely as &, varies from 0° to
58°. Beyond &, = 58, it increases sharply attaining its maxima at 6, = 65° and
decreases sharply to a value nearly zero at &, = 90°, For y* = (.25, it oscillates as
6y varies from 0° to 90° having its peak values at & = 65° and & = 74°. For y*
= (.5, it also oscillates as &, varies from 0° to 90° and attains its maxima at &, =
65°. For y* = 0.75, it oscillates as &, varies from 0° to 90° having its peak values
at 6y = 20° 42° and &, = 65° In case of welded contact, it has similar variation
as that for y* = .75, with the exception that it attains its peak values at &y = 20°,
42° and 69°. These variations have been shown in Figs. 19, 22 and 18 respectively.

The amplitude ratio 1 Z; 1 of refracted coupled wave remains zero as &, varies
from 0° to 65° for all values of bonding constant ¥*. In case of smooth interface,
it has its value 3.805¢-003 at &, = 66°. It decreases sharply to a value nearly zero
at & = 90°. For * = 025 and 0.50, it has its values 1.516e-002 and 8.736¢-003
respectively at & = 66°. For these values of bonding constant, it first oscillates and
then decreases slowly as 4, varies from 0° to 90°. For y* = 0.75 and 1.00, it has
its values 2.02¢-003 and 7.159¢-003 respectively at 8, = 66°. Beyond 6, = 66°, it
decreases uniformly for y* = 0.75 and 1.00. These variations have been shown
graphically in Figs, 15 and 17.

The amplitude ratio |1Zs| of the another refracted coupled wave has its value
zero at & = 0° for all values of bonding constant y*. For the case of smooth
interface, it increases slowly to a value 0.4558 at 6, = 31°. Beyond 4, = 31°, it
oscillates attaining its peak values at &, = 52°, 55° and 65° and finally decreases to
a value nearly zero at 6, = 90°. For y* = 0.25, it increases slowly to a value 1.358
at & = 37° As 6, varies from 37° to 42°, it decreases sharply and then increases
sharply to value 17.51 at 6, = 65°. As 6, varies from 65° to 68°, it decreases sharply
and then increases very sharply attaining its maxima at §, = 74° As G, >74°, it
decreases sharply to a value 3.049 at g, = 90° For y* = 0.5, it increases slowly to
value 5.136 at 6, = 40°. As &, varies from 40° to 67°, it oscillates getting its maxima
at & = 65°. Beyond & = 67°, it increases very slowly to a value 1.652 at 6, =
90°. For " = 0.75, it increases slowly to its maximum value 5.149 at &, = 42° and
then decreases to a value 6.162¢-002 at §, = 56°. It again increases sharply to a
value 4.497 at ¢ =65° and decreases very sharply to a value 2.377¢-001 at 4 =
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66°. As 6, varies from 67° to 90°, it increases slowly to a value 1.091 at & = 90°.
In case of welded interface, it increases slowly to its maximum value 1.391 at 6, =
429 and then decreases sharply to a value 3.488¢-002 at & = 47°. Beyond & = 47°,
it increases slowly getting its value 0.9342 at & = 80°. As ¢, varies from 80° 10
907, it decreases minutely. These variations have been shown in Figs. 16 and 25.

It may be concluded that in case of incident SV-wave, the amount of slip is
maximum in the range 60° to 70° and the effect of loosely bonded interface becomes
immaterigl when the incidence is very near to grazing incidence.

CONCLUSION

Numerical calculations in detail have been presented for the case of both P- and
SV-waves incident at the interface of model considered and the results obtained agree
fairly with those of Murty” For all values § discussed in the problem, it is observed
that amplitude ratio changes with the change of bonding parameter §~ and the rate
of chapge of the amplitude ratio is not uniform. It is also observed that for the both
cases of striking waves, most of the energy gets reflected and the energy transmitted
across the interface is maximum along the refracted longitudinal displacement wave
and energy transported by a set of two refracted coupled waves is very small.
Therefore, the assumption of loosely bonded interface instead of welded will affect
the reflection-refraction phenomenon considerably. It may represent a more realistic
form of the earth model and may be of the interest for experimental seismologist.
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