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In the present investigation. we have discussed the reflection of plane waves in micropolar generalized thermoelas-
tic solid half-space with stretch. The reflection coefficients of various reflected waves with the angle of incidence
for Green-Lindsay and Lord-Shulman theories have been obtained. The thermal and stretch effects are observed
on various reflected waves and have been depicted graphically. A special case has been deduced.
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INTRODUCTION

Theory of micropolar continua was proposed by Eringen1 to describe the continuum behaviour of
the materials possessing micro-structure. The propagatgon of plane waves in an infinite micropolar
elastic solid have been discussed by many researchers™ .

Eringens'7 extended his work to include the effect of axial stretch during the rotation of
molecules and developed the theory of micropolar elastic solid with stretch. Composite materials
reinforced with chopped elastic fibres, porous media whose pores are filled up with gas or inviscid
liquid, asphait, or other elastic inclusions and ‘solid-liquid” crystals etc. should be characterizable by
microstretch solids® °,

Lord and Shulman'® and Green-Lindsay” developed generalized theory of thermoelasticity
by including the thermal relaxation in time in the constitutive equations of coupled theory of
thermoelasticity. These theories eliminate the paradox of infinite velocity of heat prop?falion_ Some
problems on reflection in thermoelastic solids have been discussed by Deresiewicz “, Sinha and
Sinha'? and Sharma'“.

The linear theory of micropolar thermoelasticity waslgeveloped by e?(ltending _the theory of
micropolar continua to include thermal effect by Ering]e7n ° and Nowacki anq is kgown as
micropolar coupled thermoelasticity. Dost and Tabarrok presemed‘ the ggnerallzed mlcropplar
thermoelasticity by using Green-Lindsay theory. Wave propagation in algmlcropola_lr generalized
thermoelastic body with stretch has been studied by Kumar and Singh'°. Following Lord and
Shulman'® and Green and Lindsay''; we study the reflection of micropolar thermoelastic waves with

stretch taking into consideration the thermal relaxation in time at a solid half-space.
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BASIC EQUATIONS

We consider a homogeneous micropolar generalized thermoelastic solid with stretch that occupies the
half-space. A Cartesian co-ordinate system (x, y, z) is chosen with a stress-free surface z = 0 and
z-axis pointing into the solid half-space. We consider plane waves in the x-z plane with wave front
parallel to the y-axis. Following Eringen”, Lord and Shulman'® and Green Lmdsay the constitutive
relations and field equations can be written as:

p=Au,  Op+plu +u )+ K, gijra)r)—v(6+t1{9)§ij o (D)
- (3
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where
2 2 2 .
=(A+20)/p, cy=p/p, c3=K/p, cy=¥pJ,

c§ =(a+p/pj, a)(z) =K/pj, v=03A+2u+ Ky, v=v/p,

where A, 4, K, &, B, ¥, &y, B, 7, are material constants, p the density, j the microrotational inertia,

K* the coefficient of thermal conductivity, a, the coefficient of linear expansion, C" the specific
heat at constant strain &, the initial uniform temperature, Iy 1y, are the thermal relaxation times,
é‘ij the kronecker deltat, u the displacement vector, w the microrotation vector and ¢* the scalar
microstretch. The superposed dot denotes the derivative with respect to time.

For the L-S (Lord-Shulman) theory t1=0, 51 =1 and for G-L (Green-Lindsay) theory
t;,>0 and ), =0 (k = 1 for L-S and 2 for G-L theory). The thermal relaxations 7, and 1, satisfy
the inequality ¢, 21,20 for the G-L theory only.

By Helmoholtz representation of a vector, we can write

u="Vg+ VxU, V.U=0, . (8)

w= W +Vxa®, V.7 =0, .. 9
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Since we are discussing a two-dimensional problem in the xz-plane, we have

u=(uy,0,uy), £=(0,4,0) . (10)

Eliminating & from eq. (4) and (6) and making use of eqs. (8) and (10), we get
(o J 2 FAYRNCAE
‘744— E*[1+t0§]+8(1+’1§J[1+51k’0§]+7§ —;qu
!
c (.. 217
+ =5 l1+1, 2 =0, (11
K ‘f( 0% | )

Similarly, eqgs. (4) and (5) with the help of eqgs. (8)-(10) by eliminating ¢, [=-(9),] yield

2 5
U, - (i+iJ—£ -wﬂ{g-z} U, + [2w§+iJﬂ:0,

3 _ —_—
y b2 cs &2 Ci bZCi 0-)[2 o—;tz
. (12)
where
-2
—x K* 2 vV 90
K =—, V2=C2+C2, b=C2+C2,U‘=— and €= 5 .
P 1 1 3 2 3Py ( U)_v @Vf
BOUNDARY CONDITIONS
The appropriate boundary conditions are
. (13)

FORMULATION OF THE PROBLEM AND ITS SOLUTION

When we consider the propagation of a train of plane waves in the xz-plane which makes an angie
/ with the normal to the boundary, / is known as the angle of incidence. For an incident longitudinal

displacement wave c¢ =V, cosec /, for an incident coupled transverse and microrotational waves,

-1 . . . .
c=Vi(=4, ) cosec I and for an incident longitudinal microstretch wave c=V" cosec I, where

/2
[ e N
Vi, V5 and V= A = are velocities of longitudinal displacement wave, coupled

.

waves and longitudinal microstretch waves respectively and ¢ is the apparent phase velocity on the
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surface. The complete geometry of the problem has been shown in Fig. 1.

2=0 0

MICROPOLAR GENERALIZED THERMO-
ELASTIC HALF SPACE WITH STRETCH

—> X

FIG. 1. Geometry of the problem

Solving egs. (11), (12) and (7), we obtain the appropriate potentials as

g=[A, L A, e"/ﬁZ +A4A; A +A, o +Ag e /izz] eik(ct—x)’

6= ;} [b,A, €4+ byAye A+ by + byA, e HF] K,
0

Uy: [Ag oA Ag e"’l3z+A7 e/l4Z+A8—Z4z] eik(cz—x)7

- - A2y ik(ct —x)
0)2 = [b3A5 e/l:%z + b3A6 (4 /132 + b4A7e/%4Z + b4A8 e 4 ] el (Ct X)
and
8" = G[A, Mt + Ay €A ke =)
where

172
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—
N |-
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172
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and

. (14)

. (15)

.. (16)

. (17

. (18)

.. (19)
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2 *
C c
A=K V22 ~ =, k(i -ty ke) + £ (i - 1) ke) (1 + ike 1 6,))],
1 K

c o ?
B=k* -2 +cK® = (1= tgke) + efi =1 ke) (1 + ety 81) =2 =1 k) |,
1 K 1

*

2 c2 c2 a)(z) 3
C'=k —2+~2—2 +?2‘ "‘2‘—2
b 4 4| b
and
2 2
, 4 c F & L@l ¢35 2c2 )
D' =k 1-—3-—— 57 Pk | vy 2
B b, AU
G is a constant with dimension L2
and
2 2 2
2 2
b= VDV =12 b= GG |- A b?\, (i =3, 4)
€3 €3 3 J
K=V +iwt);
(a) for incident and longitudinal displacement waves,
Al =Ag=A;=A4=0; .. (20)
(b) for incident coupled transverse and microrotational waves
A|=A3=A3=A3=0; .. (2D
and

(c) for incident longitudinal microstretch waves
A|=A3=A5=4,=0. .. (22)

Making use of the potentials given by egs. (14)-(18) in the boundary conditions (13) and
with the help of egs. (1)-(3) and (8)-(9), we obtain a system of five non-homogeneous equations
which can be written as

2 a.z.=b

(7] I’

5
(i=1,2 .,4), .. (23)

—

i
where

d=(A+u+ KA -AK -pb, (=12
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ay; =~ ikQu + KA, (i =34
* * * * * * * * *
ajs=0=a25 =a31 = a3z =as) =452 =a43 = ag4 = a4s,

a=ikQu+ KA, (=1,2;  ay=@+KA Kb+ (=3, 4,

* — ik
a3i=Aibi, (i =3, 4) a§5=-l—;,&g; asi=ikfobi, (i =3, 4)
a4i=’libz" (i=1,2); and a;5=3a'o/l6G ;

(a) for incident longitudinal displacement waves
bi=-aly, bi=ax, bi=al, bi=ai, b5=aj ; - (24)

(b) for incident coupled transverse and microrotational waves,

* * * * * * * * *
bi=ayy by=-ay by=ay, by=ay, bs=-as; - (29
(¢) for incident longitudinal microstretch waves
* * * * * * * * * .
by=ais, by=ay, by=-a35 by=ay bs=ass; - (26)
and
A A A A A
2 4 6 8 _ 20 .
Z1 = e Z2 = e 23 = e Z4 = R ZS = .. (27

are the amplitude ratios of thermal wave, longitudinal displacement wave, two coupled waves and
a longitudinal microstretch wave respectively, where

{ A, forincident longitudinal displacement wave,
3 g P
A= 3 A, for incident coupled wave,
l Ag,  forincident longitudinal microstrech wave

Particular Cases
(iy For L-S theory (1, =G, ;, = 1), the expressions for 4, and 4, in the system of eq. (23)
will be

Y172

172
={ [mu} : 42={—%NA*7—4B*+A*I} , - (28)

where
2
=k2(%—2 ~C‘—*;k<‘(1+£)(z—t0kc)
SO
[ 2 2
and B =kt 1-%5 +ck3——~(z—r0kc) 1+e-5
Vl Vl
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(i)  For G-L theory (1; >0, 8}, =0), the expressions for A, and A, in the system of eq. (23)
will become

172

172
1 g
,11={5[VA’2—4B’-A']} ; /12={—%[VA'2—4B’+A’]} : - (29)

where
2
A=k 5-2 -kcg {(i~ 1o ke) + i - 1, ke)}
vl K
2 2
and B=i1-5 +ck3g; (i-tyke)| 1-55 [+eti-1, k) L.
Vl) K Vi

SPECIAL CASE

If we neglect both stretch and thermal effects, the expression for 4,, 4, and Ag in the system of
eq. (23) will be

where

“
[}

e i

[

o ' : Ny 4
in this case. our results reduce to those obtained by Parfitt and Eringen”.

THERMAL RELAXATION IN TIME

Chester'” argued that since 1, i1s the time needed to establish a steady resistive flow, the rate

/1, must be connected with thermal resistance and 7, must be proportional to the thermal

0
conductivity K*. Also, the exact relaiion between 1o and K" can be found once the second sound
speed in a solid has been established. He has pointed out that there is a critical lower frequency
below which thermal waves will not propagate and also there is an upper frequency limit above

which the concept of temperature becomes hazy and thermal waves will not exist. Lord and

Shulman'® regarded it as relaxation parameter and used the non-dimensional form of the relaxation

time as apC” tO/K*, al = (/1+2/1)/p)1’/2] is the velocity of longitudinal waves. Nayfesh and Nasser?"

took IO:SK*/,OC* o*. According to the experiment of Peierls®! its order should be 107 %3 Lord®

~ 1 . . .
took 7,=10" B Green and Lindsay" considered 1, and 1| as relaxation times.
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Since we are dealing with micropolar generalized thermoelastic solid with stretch, we consider

h= 3K /pC” V? and 1, of the same order as ¢, Jefferys23 presented his results for reflections from

free surface in terms of reflection coefficients. We have followed Jefferys line of calculation for our
results.

NUMERICAL ANALYSIS

We take the case of aluminium-epoxy composite subject to thermal disturbances for our calculations.
The physical constants used by us are :

p =219 gm/cm’, j = 0.196 cm?, A=7.59x 10! dyne/cm?,
#=189x10'! dyne/om?, K = 0.0149 x 10'! dyne/em?, & = 0.073,
y=0268x 10" dyne, C =023 callC®, K = 0.6 x10™2 cal/em sec °C,

10=3K"/pC* Vi=6131x10"3, 1 = 8765 x10°3, w*/wp=10.

For the above values of relevant physical constants, the system of eq. (23) in reduced form
for L-S theory, G-L theory and micropolar elastic case are solved for reflection coefficients by using
Gauss Elimination method for different angles of incidence varying from 0° to 90°. The variations
of reflection coefficients with the angle of incidence have been shown graphically in Figs. 2 to 16
for the incident longitudinal displacement wave (LD wave), coupled transverse and microrotational
waves (coupled wave) and longitudinal microstretch waves (LMS-wave).

In all cases LS(1) and GL(1) correspond to reflection coefficients in a free micropolar
generalized thermoelastic half-space for Lord-Shulman and Green-Lindsay cases respectively.
Similarly, LS(2) and GL(2) correspond to reflection coefficients in a free micropolar generalized
thermoelastic half-space with stretch for Lord-Shulman and Green-Lindsay cases respectively. Also
F corresponds to refiection coefficients in a free micropolar elastic half-space.

Case (i) : Incident Longitudinal Displacement Wave
The variations of the reflection coefficients Izi L (i=1,2,.,5) with the angle of incidence

I of the incident LD-waves starting from /=0° (normal incidence) to 6,=90 °C are depicted in

Figs. 2 to 6. The comparisons between LS(1), GL(1), LS(2), GL(2) and F reveals that the thermal
and stretch effects play an importart role in reflection phenomenon In Fig. 2, the reflection
coefficients 1z, | for GL(2) has been multiplied by 10 to its original values. The reflection

coefficients |z, | for GL(2) has been multiplied by 107! to its original values in Fig. 3 and the
reflection coefficients |z, | for LS(1), LS(2) and GL(2) have been multiplied by 107", 10™ and 107
respectively in Fig. 4. In Fig. 5, the reﬂection coefficients 1z, for LS(1), LS(2) and GL(2) have

been multiplied by 10'1 107! and 10” respectwely to their original values. The reflection coefficients
lz5 | for GL(2) has been multiplied by 107! and has been shown in Fig. 6. It is observed that the

variations of reflection coefficients bzl =1, 2, .., %) for LS()) and GL(i), ({ = 1, 2) are quite

different for different values of angle of incidence I. It is also noticed that for incident longitudinal
displacement wave, the stretch effect on reflected thermal wave. (Iz; ) and reflected coupled wave

(Iz31- 1241y is significance for GL-theory as compared to that in LS-theory, whereas it is observed
as the maximum of LS-theory in case of reflected LD-waves. In Fig. 6, the amplitude ratios |z |

corresponds to reflected longitudinal microstretch waves which have different variations for LS-theory
and GL-theory.
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Case (ii) : Incident Coupled Transverse and Microrotational Wave

The variations of reflection coefficients lz;1, (i = 1, 2, .., 5) with the angle of incidence [/

have been shown graphically in Figs. 7 to 11. Likewise the case of incident LD-wave, the stretch
and thermal effects are observed on all reflection coefficients. The reflection coefficient 1z, | for

LS(2) and GL(2) has been multiplied by 1073 and 1072 to their original value and has been shown
in Fig. 7. The reflection coefficients |z, for reflection LD-wave have been shown in Fig. 8, by

multiplying its original values by 1072 and 10° for LS(2) and GL(2) cases respectively. The reflection
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coefficients 1z, | and Iz, | for reflected coupled waves have been shown in Figs. 9 and 10 by

multiplying their original values by 1072 for LS(2) and GL(2) cases respectively. The reflection
coefficients |z¢ | for reflected longitudinal microstretch wave are also multiplied by 1072 and 107!

for LS(2) and GL(2) respectively and have been shown in Fig. 11. It is noticed that the stretch
effects on reflected coupled waves (Iz;1, 1z,1) is maximum for LS-theory as compared to that for

GL-theory, whereas the stretch effects on reflected thermal and longitudinal displacement wave is
maximum for GL-theory as compared with LS-theory. The variations of reflected longitudinal
microstretch wave are different in LS- and GL-theories as shown in Fig. 11.

Case (iii) : Incident Longitudinal Microstretch Wave

The varations of reflection coefficients Iz, (i = 1, 2, .., 5) for various reflected waves

for LS(2) and GL(2) cases have been depicted in Figs. 12 to 16. In LS(1), GL(1) and free micropolar
elastic (F) cases, these reflected waves do not appear. The reflection coefficient |z, | of reflected

LD-wave for LS(2) case has been multiplied by 10° to its original value and has been shown in
Fig. 13. From Figs. 12 to 16, it is clear that the variations of reflected waves are different for both

LS- and GL-theories. This difference is minimum when 7=0° and maximum when 7 = 90°.
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