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In the present investigation, it is shown that there exists five basic waves in a microstretch elastic
solid half-space. The problem of reflection of plane waves from free surface of a microstretch elastic
solid half-space is studied. The energy ratios for various reflected waves are obtained for aluminium-
epoxy composite as a microstretch elastic solid half-space. The variations of the energy ratios with
the angle of incidence are shown graphically. The microstretch effect is shown on various reflected
waves.

1. Introduction

The linear theory of elasticity is of paramount
importance in the stress analysis of steel, which
is the commonest engineering structural mater-
ial. To a lesser extent linear elasticity describes
the mechanical behaviour of the other common
solid materials, e.g., concrete, wood and coal.
However, the linear theory of elasticity is unable
to explain the behaviour of many of the new
synthetic materials of the elastomer and poly-
mer type, e.g., polymethyl-methacrylate (Perspex),
polyethylene, polyvinyl chloride. The theory of
micropolar elasticity is adequate to represent
the behaviour of such materials. For ultrasonic
waves i.e., for the case of elastic vibrations char-
acterized by high frequencies and small wave-
lengths, the influence of the body microstructure
becomes significant. This influence of microstruc-
ture results in the development of new type
of waves, not found in the classical theory of
elasticity.

Microstretch continuum is a model for Bravias
lattice with a basis on the atomic level and
a two phase dipolar solid with a core on the
macroscopic level. For example, composite materi-
als reinforced with chopped elastic fibres, porous
media whose pores are filled with gas or invis-

cid liquid, asphalt or other elastic inclusions and
‘solid-liquid’ crystals, etc., should be characteriz-
able by microstretch solids. Eringen (1971, 1990)
developed a theory of microstretch elastic solid in
which he included microstructural expansions and
contractions.

The problem of reflection of plane waves at
the free surface of an elastic material is solved
by Jeffreys (1926); Gutenberg (1944); Ewing et al
(1957), etc.

The exact nature of the layers under the earth
surface are not known. For the purpose of theo-
retical investigation about the earth’s interior, we
consider various appropriate models. The prob-
lems of waves and vibrations become more impor-
tant in the field of seismology, when one stud-
ies the problem with additional parameters (e.g.,
microstretch, thermal disturbance, microrotation,
porosity, viscosity, etc.). In the present paper,
the basic equations of motion for microstretch
elastic solid are solved and it is shown that
there exist five basic waves in a microstretch
elastic solid. The reflection of plane waves from
free surface of a microstretch elastic solid half-
space is studied. The energy ratios of various
reflected waves are computed and shown graphi-
cally with the angle of incidence of the striking
wave.
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Figure 1. Geometry of the problem.

2. Formulation of the problem

Coordinate axes and the geometry of the wave sys-
tem are defined with reference to figure 1. The x
axis is taken along the free surface whereas the z
axis is taken normal to free surface in downward
direction. The region z > 0 is occupied by linear
isotropic microstretch elastic solid. The x axis coin-
cides with the direction of propagation of the sur-
face wave. The plane of propagation of the incident
wave is taken as the x-z plane.

Following Eringen (1990), the constitutive equa-
tions and field equations for linear isotropic
microstretch elastic solid in the absence of body
forces and body couples can be written as

tkl = λur,rδkl + µ(uk,l + ul,k) + κ(ul,k − εklrφr)
+ λoψδkl, (1)

mkl = αφr,rδkl + βφk,l + γφl,k, (2)

βk = α0ψ,k, (3)

and

(c21 + c23)∇(∇ · u) − (c22 + c23)∇ × (∇ × u)

+ c23∇ × φ + λ̄o∇ψ = ü, (4)

(c24 + c25)∇(∇.φ) − c24∇ × (∇ × φ) + ω2
o∇

× u − 2ω2
oφ = φ̈, (5)

c26∇2ψ − c27ψ − c28(∇.u) = ψ̈, (6)

where

c2
1 = (λ + 2µ)/ρ, c2

2 = µ/ρ, c2
3 = κ/ρ,

c2
4 = γ/ρj, c2

5 = (α + β)/ρj, ω2
0 = c2

3/j = κ/ρj,

c2
6 = 2α0/3ρj, c2

7 = 2λ1/9ρj, c2
8 = 2λ0/9ρj,

λ0 = λ0/ρ. (7)

Superposed dots on the right hand side of above
equations denote the second partial derivative with
respect to time, and

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂. (8)

By Helmholtz representation of vectors, we can
write

u = ∇q + ∇ × U, ∇.U = 0, (9)
φ = ∇ξ + ∇ × Φ, ∇.Φ = 0. (10)

Using equations (9) and (10), equations (4) to
(6) reduce as

(c21 + c23)∇2q + λ0ψ = q̈, (11)

c26∇2ψ − c27ψ − c28∇2q = ψ̈, (12)

(c22 + c23)∇2U + c23∇ × Φ = Ü, (13)

c24∇2Φ − 2ω2
0Φ + ω2

0∇xU = Φ̈, (14)

(c24 + c25)∇2ξ − 2ω2
0ξ = ξ̈. (15)

Here, the equations (11) and (12) are coupled in q
and ψ whereas the equations (13) and (14) are cou-
pled in U and Φ. The equation (15) is uncoupled.

For two-dimensional motion in xz-plane, we take
the displacement and microrotation vectors as

u = (u1, 0, u3) and φ = (0,φ2, 0), (16)

where

u1 =
∂q

∂x
− ∂U2

∂z
, u3 =

∂q

∂z
+
∂U2

∂x
. (17)

For two-dimensional motion in xz-plane, we
assume solutions q and ψ as

q = q(z) exp[i(ωt− kx)],

ψ = ψ(z) exp[i(ωt− kx)]. (18)
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Substituting q and ψ given by equation (18) in
equations (11) and (12) and then eliminating q and
ψ, we obtain

(∇4 +A∇2 +B)(q, ψ) = 0, (19)

where

A = (ω2/V 2
1 ) + (ω2 − c27 − a0c

2
8)/c

2
6,

B = (ω2/V 2
1 )(ω2 − c27)/c

2
6

and

V 2
1 = c21 + c23, a0 = λ0/V

2
1 , ∇2 = −k2

+ (d2/dz2).

The solution of equation (19) can be written as

q = q′ + q′′, (20)

where q′ and q′′ satisfy

(∇2 + δ2
1)q

′ = 0, (21)

(∇2 + δ2
2)q

′′ = 0, (22)

where

δ2
1 = (1/2)[A+ (A2 − 4B)1/2]

δ2
2 = (1/2)[A− (A2 − 4B)1/2]. (23)

Then, the solution of the equation (19) can be writ-
ten in the form

q = [A1 exp(m1z) +A2 exp(−m1z)
+A3 exp(m2z) +A4 exp(−m2z)], (24)

where

m2
1 = k2 − δ2

1 , m2
2 = k2 − δ2

2 , (25)

correspond to longitudinal displacement wave
(LD-wave) and longitudinal microstretch wave
(LMS-wave) respectively and A1, A2, A3, A4 are
arbitrary constants. If we denote V ∗

1 and V ∗
2 as

velocities of LD-wave and LMS-wave respectively,
then

V ∗
1 = ω/δ1, V ∗

2 = ω/δ2.

Taking second components of equation (13) and
(14), we get

φ2 =
1
c23

∂2U2

∂t2
−

(
c22
c23

+ 1
)

∇2U2, (26)

φ2 = (ω2
0∇2U2)/

(
c24∇2 − 2ω2

0 − ∂2

∂t2

)
. (27)

Eliminating φ2 from equations (26) and (27) and
assuming U2 as

U2 = f(z) exp{i(ωt− kx)}, (28)

we obtain the following linear differential equation,
(
d4

dz4
+ C

d2

dz2
+D

)
f(z) = 0, (29)

where

C=k2

(
c2

c22 + c23
+
c2

c24
−2

)
+
ω2

0

c24

(
c23

c22 + c23
−2

)
, (30)

D = k4

(
1 − c2

c22 + c23
− c2

c24
+

c4

c24(c22 + c23)

)

− k2

{
ω2

0

c24

(
c23

c22 + c23
+

2c2

c22 + c23
− 2

)
. (31)

The solution of equation (29) can be written as

f(z) = A5 exp(m3z) +A6 exp(−m3z)

+A7 exp(m4z) +A8 exp(−m4z), (32)

where

m3 =
{
(1/2)[(C2 − 4D)1/2 − C]

}1/2
and

m4 =
{
(−1/2)[(C2 − 4D)1/2 + C]

}1/2
, (33)

correspond to coupled transverse microrotational
waves and coupled transverse displacement waves
(CD I- and CD II-waves) and A5, A6, A7, A8 are
arbitrary constants. If we denote V ∗

3 and V ∗
4 as

velocities of CD I and CD II waves respectively,
then

V ∗2
3 = ω2/(k2 −m2

3), V ∗2
4 = ω2/(k2 −m2

4).

From equations (28) and (32), we obtain

U2 = {A5 exp(m3z) +A6 exp(−m3z) +A7 exp(m4z)

+A8 exp(−m4z)} exp{i(ωt− kx)}. (34)

The solution of the equation (15) corre-
sponds to the longitudinal microrotational wave
(LM-wave) as obtained by Parfitt and Eringen
(1969).

Thus, there exists five basic waves in a
linear isotropic microstretch elastic solid
half-space.



32 Baljeet Singh

3. Wave motions

For two-dimensional motion, the boundary condi-
tions at the free surface z = 0, are the vanishing
of normal and tangential force stresses, tangential
couple stress, and vector first moment at the free
surface z = 0; that is

tzz = 0, tzx = 0, mzy = 0, βz = 0. (35)

Corresponding to incident plane waves (LD or
CD II wave), four waves (LD-wave, LMS-wave, two
sets of two coupled waves CD I-, CD II- waves) will
propagate in microstretch elastic solid half-space
after reflection from free surface z = 0. For an inci-
dent longitudinal displacement wave (LD wave),
c = V ∗

1 cosec I whereas c = V ∗
4 cosec I, for an inci-

dent coupled transverse displacement wave (CD II
wave), where I is the angle of incidence.

In a microstretch elastic solid, the appropriate
potential functions for incident and reflected waves
are as follows

q = {B0 exp(m1z) +B1 exp(−m1z)
+B2 exp(−m2z)} exp[i(ωt− kx)], (36)

ψ = {ζ1B0 exp(m1z) + ζ1B1 exp(−m1z)
+ ζ2B2 exp(−m2z)} exp[i(ωt− kx)], (37)

U2 = {B0 exp(m4z) +B3 exp(−m3z)
+B4 exp(−m4z)} exp[i(ωt− kx)], (38)

φ2 = {η1B0 exp(m4z) + η2B3 exp(−m3z)
+ η2B4 exp(−m4z)} exp[i(ωt− kx)], (39)

where

ζ1,2 = {k2 −m2
1,2 − (ω2/V 2

1 )}/a0, (40)

η1,2 = k2{(1 + (c22/c
2
3) − (c2/c23)}

−m2
3,4{(1 + (c22/c

2
3)} (41)

and for an incident LD wave, put B0 = 0 in equa-
tions (38) and (39), whereas for an incident CD II
wave, put B0 = 0 in equations (36) and (37).

4. Solution of the problem

Making use of the potentials given by equations
(36) to (39) in boundary conditions (35) after using
the equations (1) to (3), (9), (10), (16) and (17),
we obtain the following system of nonhomogeneous
equations as

4∑
j=1

aij Zj = bi, (i = 1, 2, ., 4), (42)

where

a11 = λ(m2
1 + k2) + (2µ+ κ)m2

1 + λ0ζ1,

a12 = λ(m2
2 + k2) + (2µ+ κ)m2

2 + λ0ζ2,

a13 = i(2µ+ κ)k m3, a14 = i(2µ+ κ)k m4,

a21 = i(2µ+ κ)k m1, a22 = i(2µ+ κ)k m2,

a23 = −{µ(k2 +m2
3 ) + κ(m2

3 + η1)},
a24 = −{µ(k2 +m2

4 ) + κ(m2
4 + η2)},

a31 = a32 = 0, a33 = −m3η1, a34 = −m4η2,

a41 = −m1ζ1, a42 = −m2ζ2, a43 = a44 = 0,

and

(a) for an incident LD wave

b1 = −a11, b2 = a21, b3 = a31, b4 = a41,

(b) for an incident CD II wave

b1 = a14, b2 = −a24, b3 = a34, b4 = −a44,

and

Z1 = B1/B0, Z2 = B2/B0, Z3 = B3/B0,

Z4 = B4/B0,

are the amplitude ratios for reflected LD-wave,
LMS-wave, CD I- and CD II-waves respectively.

We shall now consider the partitioning of energy
between different reflected waves at a surface ele-
ment of unit area. Following Achenbach (1973), the
instantaneous rate of work of surface traction is
the scalar product of the surface traction and the
particle velocity. This scalar product is called the
power per unit area, denoted by P ∗, and represents
the rate at which the energy is communicated per
unit area of the surface, i.e., the energy flux across
the surface element. The time average of P ∗ over
a period, denoted by 〈P ∗〉, represents the average
energy transmission per unit surface area per unit
time. For the microstretch elastic solid, the rate of
energy transmission at the free surface z = 0 is
given by

P ∗ = tzz u̇3 + tzx u̇1 +mzy φ̇2. (43)

Following Achenbach (1973), for any two complex
functions of the forms

F = Fo e
i(ωt−γ1), f = fo e

i(ωt−γ2),

where Fo and fo are real-valued, the following is
relation for time average of a product of real parts
of two complex functions F and f

〈R(F ) ×R(f)〉 = R(Ff)/2. (44)
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Figure 2. Variations of the square roots of the energy ratios with the angle of incidence of incident LD wave.

We shall now calculate 〈P ∗〉 for the incident and
each of the reflected wave using the appropri-
ate displacement potentials and hence obtain the
energy ratios giving the time rate of average energy
transmission for the respective wave to that of the
incident wave. The expressions for these energy
ratios Ei(i = 1, 2, ., 4) for the reflected LD,
reflected LMS, reflected CD I and reflected CD II
waves respectively are given by

Ei = 〈P ∗
i 〉/〈P ∗

o 〉, (i = 1, 2, ., 4), (45)

where

〈P ∗
1 〉 = [(1/2){(λ+ 2µ+ κ)(m2

1 − k2) +m1 λo ζ1}]
(m1/mo)|Z1|2,

〈P ∗
2 〉 = [(1/2){(λ+ 2µ+ κ)(m2

2 − k2) +m2 λo ζ2}]
(m2/mo)|Z2|2,

〈P ∗
3 〉 = [(1/2){(µ+ κ)(m2

3 − k2) + γ η2
1 + κη1}]

(m3/mo)|Z3|2,

〈P ∗
4 〉 = [(1/2){(µ+ κ)(m2

4 − k2) + γ η2
2 + κη2}]

(m4/mo)|Z4|2, (46)

and

(a) for an incident LD wave:

〈P ∗
o 〉 = −[(1/2){(λ+ 2µ+ κ)(m2

1 − k2)
+m1 λoζ1}], mo = m1. (47)

(b) for an incident CD II wave:

〈P ∗
o 〉=−[(1/2){(µ+κ)(m2

4 −k2)+γ η2
2+κη2}],

mo = m4. (48)

5. Numerical results and discussion

Following Gauthier (1982), we take the case of
aluminium-epoxy composite (microstretch elastic
solid) for the purpose of numerical calculations.
The physical constants used are given as
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Figure 3. Variations of the energy ratios for reflected waves with the angle of incidence of incident LD wave.

γ = 7.59 × 1011 dyne/cm2, µ = 1.89 × 1011 dyne/cm2,

κ = 0.0149 × 1011 dyne/cm2, γ = 0.0268 × 1011 dyne,

λo = 0.62 × 1011 dyne, λ1 = 0.63 × 1011 dyne,

αo = 1.45 × 1011 dyne, ρ = 2.19 gm/cm3,

j = 0.0196 cm2, ω2/ω2
o = 10.

For the above values of the relevant physical con-
stants, the systems of equations (42) are solved
for amplitude ratios by the application of the
Gauss elimination method for each value of angle
of incidence of the incident LD- (or CD II-) wave
varying from normal incidence to grazing inci-
dence. Corresponding values of the energy ratios
depending upon the angle of incidence are com-
puted using the relations (45) to (48). The varia-
tions of the square root energy ratios of reflected
waves with the angle of incidence have been
shown graphically in figures 2, 3, 4 and 5 for
incident LD- and CD II-waves respectively. The
lines with centre symbols represent the varia-
tions for reflected P - and SV -waves respectively
after neglecting the microstretch effect (elastic
case).

5.1 Incident LD-wave

The variations of square root of energy ratio for
reflected LD and CD II waves with the angle of
incidence of the incident LD-wave have been shown
by solid and dashed lines respectively in figure 2.
The square root of the energy ratio for reflected
LD has its value one at I = 0◦ and I = 90◦ and
attains its minima at I = 61◦. Also, the square
root of the energy ratio for reflected CD II has its
value zero at I = 0◦ and I = 90◦ and attains its
maxima at I = 61◦. The solid and dashed lines with
centre symbols shows the variations of reflected P
and reflected SV waves respectively in figure 2. A
comparison between lines with and without centre
symbols shows the microstretch effect on reflected
elastic waves.



Reflection of plane waves 35

REFLECTED LD
REFLECTED P
REFLECTED CD   II
REFLECTED SV

0.5

1.0

0.6

0.4

0.2

0.0

0 7 14 21 26 36

ANGLE OF INCIDENCE (degrees)

E
N

E
R

G
Y

   
R

AT
IO

S
 (

E
  /

  E
1 

) 
1 

/ 2

Figure 4. Variations of the energy ratios for reflected waves with the angle of incidence of incident CD II wave.

The variations of the square root of energy ratios
for reflected LMS and CD I waves with the angle
of incidence varying from normal to grazing inci-
dence have been depicted in figure 3. It is the
microstretch effect due to which the above two new
waves appear in a microstretch elastic solid.

The sum of energy ratios (normalized energy) at
each angle of incidence for various reflected waves
in a microstretch elastic solid is found to be equal
to unity as in case of an elastic solid.

5.2 Incident CD II-wave

The variations of square root of energy ratio for
reflected LD and CD II waves with the angle of inci-
dence of the incident CD II-wave have been shown
by solid and dashed lines respectively in figure 4.
The square root of the energy ratio for reflected
LD has its value zero at I = 0◦. It increases and
attains its maxima near I = 21◦. For the range
21◦ ≤ I ≤ 24◦, it decreases. Beyond I = 24◦, it
becomes zero at each angle of incidence. Also, the
square root of the energy ratio for reflected CD II
has its value one at I = 0◦ and decreases to its

minima at I = 21◦. For the range 21◦ ≤ I ≤ 24◦, it
increases. Beyond I = 24◦, it becomes one at each
angle of incidence. The solid and dashed lines with
centre symbols shows the variations of reflected P
and reflected SV waves respectively in figure 4. A
comparison between lines with and without centre
symbols shows the microstretch effect on reflected
elastic waves.

The variations of the square root of energy ratios
for reflected LMS and CD I waves with the angle
of incidence of incident CD II wave have been
depicted in figure 5. Beyond I = 24◦, these waves
disappear.

The sum of energy ratios (normalized energy) at
each angle of incidence for various reflected waves
in a microstretch elastic solid is also found to be
equal to unity.

6. Conclusions

Detailed numerical calculations have been pre-
sented for the case of both LD- and CD II-waves
incident at the free surface of a microstretch elastic



36 Baljeet Singh

ANGLE OF INCIDENCE (degrees)

E
N

E
R

G
Y

 R
A

T
IO

S
 (

E
 / 

E
j)1

/2

0.05

0.04

0.03

0.02

0.01

0.00

0 5 10 15 20 25

REFLECTED LMS
REFLECTED CD I

Figure 5. Variations of the energy ratios for reflected waves with the angle of incidence of incident CD II wave.

solid (aluminium-epoxy composite) and the results
obtained agree fairly with those of Ewing et al
(1957). If we neglect the microstretch effect, it is
found that the LD and CD II waves become P and
SV waves respectively whereas the LMS and CD I
waves do not appear. In case of an incident CD II
wave, the critical angle is found to be at I = 24◦.
After neglecting the microstretch, the critical angle
shifts at I = 34◦ for the case of an incident SV
wave. The normalized energy at each angle of inci-
dence of incident LD (or CD II) wave is found to
be equal to unity. Thus, the microstretch effect
plays an important role in reflection phenomenon.
The current problem is the more realistic model
of the earth. Experimental seismologists can make
use of this model for estimation of earthquake pre-
dictions.

List of Symbols
ρ the density of linear microstretch

elastic solid.
u the displacement vectors.
φ the microrotation vectors.
ψ the scalar microstretch quantity.
λ, µ the Lame’s constants.

α, β, γ, κ the microrotation constants.
α0, λ0, λ1 the microstretch constants.
j the microrotational inertia.
q, ξ the scalar potentials.
U,Φ the vector potentials.
∇ the del operator.
u1, u2, u3 the components of displacement

vector u.
φ1,φ2,φ3 the component of microrotation

vector φ.
k the wave number.
c apparent phase velocity on the

surface.
ω(= kc) angular frequency.
U1, U2, U3 the components of vector U.
R(F), R(f) the real parts of complex functions

F and f.
f̄ the complex conjugate of function f.
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